Citation: | Wu Maoqi, Tan Shujun, Gao Feixiong. Shape reconstruction of plane beam with finite deformation based on absolute nodal coordinate formulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2776-2789. DOI: 10.6052/0459-1879-21-338 |
[1] |
Rapp S, Kang LH, Han JH, et al. Displacement field estimation for a two-dimensional structure using fiber Bragg grating sensors. Smart Material Structures, 2009, 18(2): 025006 doi: 10.1088/0964-1726/18/2/025006
|
[2] |
Roesthuis RJ, Janssen S, Misra S. On using an array of fiber Bragg grating sensors for closed-loop control of flexible minimally invasive surgical instruments//IEEE/RSJ International Conference on Intelligent Robots & Systems, 2014
|
[3] |
Ryu SC, Dupont PE. FBG-based shape sensing tubes for continuum robots//IEEE International Conference on Robotics and Automation (ICRA), 2014
|
[4] |
Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter. Applied Optics, 1998, 37(10): 1735-1740 doi: 10.1364/AO.37.001735
|
[5] |
Li J, Zhi Z, Ou J. Interface transferring mechanism and error modification of embedded FBG strain sensor//Smart Structures & Materials. International Society for Optics and Photonics, 2004
|
[6] |
Jiang H, Bartel V, Daniel K, et al. Real-time estimation of time-varying bending modes using fiber bragg grating sensor arrays. AIAA Journal, 2013, 51(1): 178-185
|
[7] |
Davis MA, Kersey AD, Sirkis J, et al. Shape and vibration mode sensing using a fiber optic Bragg grating array. Smart Materials & Structures, 1999, 5(6): 759-765
|
[8] |
Foss GC, Haugse ED. Using modal test results to develop strain to displacement transformations. Proceedings of SPIE-The International Society for Optical Engineering, 1995, 2460: 112
|
[9] |
Tessler A, Spangler JL. A variational principle for reconstruction of elastic deformations in shear deformable plates and shells. NASA/TM-2003-212445, 2003
|
[10] |
Vazquez SL, Tessler A, Quach CC, et al. Structural health monitoring using high-density fiber optic strain sensor and inverse finite element methods. NASA/TM-2005-2137612005, 2005
|
[11] |
Gherlone M, Cerracchio P, Mattone M, et al. An inverse finite element method for beam shape sensing: theoretical framework and experimental validation. Smart Materials & Structures, 2014, 23(4): 045027
|
[12] |
Groh R, Tessler A. Computationally efficient beam elements for accurate stresses in sandwich laminates and laminated composites with delaminations. Computer Methods in Applied Mechanics & Engineering, 2017, 320: 369-395
|
[13] |
Roy R, Tessler A, Surace C, et al. Shape sensing of plate structures using the inverse finite element method: investigation of efficient strain–sensor patterns. Sensors, 2020, 20(24): 7049 doi: 10.3390/s20247049
|
[14] |
Kefal A, Tessler A, Oterkus E. An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures. Composite Structures, 2017, 179: 514-540
|
[15] |
Kefal A, Tabrizi IE, Yildiz M, et al. A smoothed iFEM approach for efficient shape-sensing applications: Numerical and experimental validation on composite structures. Mechanical Systems and Signal Processing, 2020, 152: 107486
|
[16] |
Oboe D, Colombo L, Sbarufatti C, et al. Shape sensing of a complex aeronautical structure with inverse finite element method. Sensors, 2021, 21(4): 1388 doi: 10.3390/s21041388
|
[17] |
Li T, Cao M, Li J, et al. Structural damage identification based on integrated utilization of inverse finite element method and pseudo-excitation approach. Sensors, 2021, 21(2): 606 doi: 10.3390/s21020606
|
[18] |
Ko WL, Richards WL, Tran VT. Displacement theories for in-flight deformed shape predictions of aerospace structures. NASA/TP-2007-214612, 2007
|
[19] |
Yi JC, Zhu, XJ, Zhang HS, et al. Spatial shape reconstruction using orthogonal fiber Bragg grating sensor array. Mechatronics, 2012, 2012, 22(6): 679-687
|
[20] |
Roesthuis RJ, Kemp M, Dobbelsteen JJ, et al. Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE/ASME Transactions on Mechatronics, 2014, 19(4): 1115-1126 doi: 10.1109/TMECH.2013.2269836
|
[21] |
Xu L, Ge J, Patel JH, et al. Dual-layer orthogonal fiber Bragg grating mesh based soft sensor for 3-dimensional shape sensing. Optics Express, 2017, 25(20): 24727 doi: 10.1364/OE.25.024727
|
[22] |
Shabana AA, Hussien HA, Escalona JL. Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. Asme Journal of Mechanical Design, 1998, 120(2): 188-195 doi: 10.1115/1.2826958
|
[23] |
Shabana AA, Yakoub RY. Three dimensional absolute nodal coordinate formulation for beam elements: theory. Journal of Mechanical Design, 2001, 123(4): 606-613 doi: 10.1115/1.1410100
|
[24] |
Yakoub RY, Shabana AA. Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. Journal of Mechanical Design, 2001, 123(4): 614-621 doi: 10.1115/1.1410099
|
[25] |
Jiang H, Bartel V, Dolk V, et al. Modal estimation by FBG for flexible structures attitude control. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(4): 2642-2653
|
[26] |
宋雪刚, 刘鹏, 程竹明等. 基于光纤光栅传感器和卡尔曼滤波器的载荷识别算法. 光学学报, 2018, 38(3): 0328012 (Song Xuegang, Liu Peng, Cheng Zhuming, et al. An Algorithm of dynamic load identification based on FBG sensor and kalman filter. Acta Optica Sinica, 2018, 38(3): 0328012 (in Chinese) doi: 10.3788/AOS201838.0328012
|
[27] |
赵飞飞, 曹开拓, 保宏等. Timoshenko梁的变形场重构及传感器位置优化. 机械工程学报, 2020, 56(20): 15-25
Zhao Feifei, Cao Kaituo. Bao Hong, et al. Deformation field reconstruction of timoshenko beam and optimization of sensor placement. Journal of mechanical engineering, 2020, 56(20): 15-25 (in Chinese)
|
[28] |
张科, 袁慎芳, 任元强等. 基于逆向有限元法的变形机翼鱼骨的变形重构. 航空学报, 2020, 41(8): 250-260 (Zhang Ke, Yuan Shenfang, Ren Yuanqiang, et al. Shape reconstruction of self-adaptive morphing wings’ fish bone based on inverse finite element method. Acta Aeronautica et Astronautica Sinaca, 2020, 41(8): 250-260 (in Chinese)
|
[29] |
谭跃刚, 黄兵, 刘虎等. 基于分布应变的薄板变形重构算法研究. 机械工程学报, 2020, 56(13): 242-248 (Tan Yuegang, Huang Bing, Liu Hu, et al. Research on deformation reconstruction algorithm of thin plate based on distributed strain. Journal of Mechanical Engineering, 2020, 56(13): 242-248 (in Chinese) doi: 10.3901/JME.2020.13.242
|
[30] |
赵士元, 崔继文, 陈勐勐. 光纤形状传感技术综述. 光学精密工程, 2020, 28(1): 10 (Zhao Shiyuan, Cui Jiwen, Chen Mengmeng. Review on optical fiber shape sensing technology. Optics and Precision Engineering, 2020, 28(1): 10 (in Chinese) doi: 10.3788/OPE.20202801.0010
|
[31] |
朱晓锦, 季玲晓, 张合生等. 基于空间正交曲率信息的三维曲线重构方法分析. 应用基础与工程科学学报, 2011(2): 305-313 (Zhu Xiaojin, Ji Lingxiao, Zhang Hesheng, et al. Analysis of 3D curve reconstruction method using orthogonal curvatures. Journal of Basic Science and Engineering, 2011(2): 305-313 (in Chinese) doi: 10.3969/j.issn.1005-0930.2011.02.015
|
[32] |
Kefal A, Oterkus E, Tessler A, et al. A quadrilateral inverse-shell element with drilling degrees of freedom for shape sensing and structural health monitoring. Engineering Science & Technology An International Journal, 2016, 19(3): 1299-1313
|
[33] |
张越, 赵阳, 谭春林等. ANCF索梁单元应变耦合问题与模型解耦. 力学学报, 2016, 48(6): 1406-1415 (Zhang Yue, Zhao Yang, Tan Chunlin, et al. The strain coupling problem and model decoupling of ANCF cable/beam element. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415 (in Chinese) doi: 10.6052/0459-1879-16-127
|
[34] |
章孝顺, 章定国, 陈思佳等. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 148-157
Zhang Xiaoshun, Zhang Dingguo, Chen Sijia, Hong Jiazhen, et al. Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 148-157 (in Chinese)
|
[35] |
Berzeri M, Shabana AA. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. Journal of Sound & Vibration, 2000, 235(4): 539-565
|
[36] |
Tikhonov AN, Arsenin VY. Solutions of Ill-Posed Problems. Washington DC: Wiston, 1977
|