Citation: | Zhan Qingliang, Ge Yaojun, Bai Chunjin. Study on flow field parameters of wake time history target recognition. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2692-2702. DOI: 10.6052/0459-1879-21-332 |
[1] |
章新华. 水下目标自动识别的核心技术. 兵工学报, 1998, 3: 275-280 (Zhang Xinhua. A survey on the core techniques in the automatic recognition of sonar targets. Acta Armamentarii, 1998, 3: 275-280 (in Chinese)
|
[2] |
朱进, 章新华. 被动声呐目标识别技术的现状与展望. 舰船科学技术, 2003, 25 (5): 55-58 (Zhu Jin, Zhang Xinhua. Status and prospects on techniques of recognition for passive sonar targets. Ship Science and Technology, 2003, 25 (5): 55-58 (in Chinese)
|
[3] |
冀航, 马泳, 杨克成. 载波调制激光雷达水下目标探测的仿真分析. 光学技术, 2007, 33(5): 648-650 (Ji Hang, Ma Yong, Yang Kecheng. Simulation analysis of modulated lidar on optical carrier for target detection in water. Optical Technique, 2007, 33(5): 648-650 (in Chinese) doi: 10.3321/j.issn:1002-1582.2007.05.028
|
[4] |
吕沛, 周仁魁, 何俊华等. 水下单像素成像系统研究. 光电子.激光, 2011, 22(9): 1425-1430 (Lu Pei, Zhou Renkui, He Junhua, et al. Research on underwater single-pixel imaging system. Journal of Optoelectronics·laser, 2011, 22(9): 1425-1430 (in Chinese)
|
[5] |
王菲, 曾庆军, 黄国建等. 基于调制线谱特征提取的被动声呐目标识别技术研究. 舰船科学技术, 2002(2): 36-41 (Wang Fei, Zeng Qingjun, Huang Guojian, et al. Research on technique of passive sonar target recognition based modulation line spectrum feature extraction. Ship Science and Technology, 2002(2): 36-41 (in Chinese)
|
[6] |
Kutz JN. Deep learning in fluid dynamics. Journal of Fluid Mechanics, 2017, 814: 1-4 doi: 10.1017/jfm.2016.803
|
[7] |
Hong F, Liu C, Guo L, et al. Underwater acoustic target recognition with a residual network and the optimized feature extraction method. Applied Sciences, 2021, 11(4): 1442-1451 doi: 10.3390/app11041442
|
[8] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions//IEEE Computer Society, Los Alamitos, CA, USA, 2015
|
[9] |
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444
|
[10] |
金磊磊, 梁红, 杨长生. 基于卷积神经网络的水下目标声呐图像识别方法. 西北工业大学学报, 2021, 39(2): 285-291 (Jin Leilei, Liang Hong, Yang Changsheng. Sonar image recognition of underwater target based on convolutional neural network. Journal of Northwestern Polytechnical University, 2021, 39(2): 285-291 (in Chinese) doi: 10.1051/jnwpu/20213920285
|
[11] |
唐旭东, 朱炜, 庞永杰等. 水下机器人光视觉目标识别系统. 机器人, 2009, 31(2): 171-178 (Tang Xudong, Zhu Wei, Pang Yongjie, et al. Target recognition system based on optical vision for AUV. Robot, 2009, 31(2): 171-178 (in Chinese) doi: 10.3321/j.issn:1002-0446.2009.02.012
|
[12] |
Yan J, Sun H, Chen H, et al. Resonance-based time-frequency manifold for feature extraction of ship-radiated noise. Sensors (Basel, Switzerland)
|
[13] |
Yang H, Shen S, Yao X, et al. Competitive deep-belief networks for underwater acoustic target recognition. Sensors (Basel, Switzerland)
|
[14] |
王年华, 鲁鹏, 常兴华等. 基于机器学习的非结构网格阵面推进生成技术初探. 力学学报, 2021, 53(3): 740-751 (Wang Nianhua, Lu Peng, Chang Xinghua, et al. Preliminary investigation on unstructured mesh generation technique based on advancing front method and machine learning methods. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 740-751 (in Chinese) doi: 10.6052/0459-1879-20-402
|
[15] |
张珍, 叶舒然, 岳杰顺等. 基于组合神经网络的雷诺平均湍流模型多次修正方法. 力学学报, 2021, 53(6): 1532-1542 (Zhang Zhen, Ye Shuran, Yue Jieshun, et al. A combined neural network and multiple modification strategy for reynolds-averaged navier-stokes turbulence modeling. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1532-1542 (in Chinese) doi: 10.6052/0459-1879-21-073
|
[16] |
江昊, 王伯福, 卢志明. 基于数据驱动的流场控制方程的稀疏识别. 力学学报, 53(6): 9
(Jiang Hao, Wang Bofu, Lu Zhiming. Data-driven sparse identification of governing equations for fluid dynamics. Chinese Journal of Theoretical and Applied Mechanics, 53(6): 9 (in Chinese))
|
[17] |
谢晨月, 袁泽龙, 王建春等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021, 53(1): 1-16 (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 1-16 (in Chinese)
|
[18] |
Ling JL, Kurzawski A, Templeton, et al. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 2016, 807: 155-166
|
[19] |
Maulik R, San O, Jacob JD, et al. Sub-grid scale model classification and blending through deep learning. Journal of Fluid Mechanics, 2019, 870: 784-812 doi: 10.1017/jfm.2019.254
|
[20] |
Ren F, Wang C, Tang H. Active control of vortex-induced vibration of a circular cylinder using machine learning. Physics of Fluids, 2019, 31(9): 93601 doi: 10.1063/1.5115258
|
[21] |
Ren F, Wang CL, Tang H. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth. Physics of Fluids, 2020, 33: 0060690
|
[22] |
Huang J, Liu H, Cai W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning. Journal of Fluid Mechanics, 2019, 875: 545
|
[23] |
Zhang Y, Azman AN, Xu KW, et al. Two-phase flow regime identification based on the liquid-phase velocity information and machine learning. Experiments in Fluids, 2020, 61(10): 212
|
[24] |
Raissi M, Wang Z, Triantafyllou MS, et al. Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics, 2019, 861: 119-137 doi: 10.1017/jfm.2018.872
|
[25] |
Jin X, Cheng P, Chen WL, et al. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Physics of Fluids, 2018, 30(4): 47105 doi: 10.1063/1.5024595
|
[26] |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 2014, 15(1): 1929-1958
|
[27] |
Alom MZ, Taha TM, Yakopcic C, et al. The history began from alexNet: A comprehensive survey on deep learning approaches. Computer Vision and Pattern Recognition. arXiv: 1803.01164 cs.cv, 2018
|
[28] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions//IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1-9
|
[29] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014
|
[30] |
Lecun Y, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision//IEEE, Paris, 2010
|
[31] |
战庆亮, 周志勇, 葛耀君. Re = 3900圆柱绕流的三维大涡模拟. 哈尔滨工业大学学报, 2015, 47(12): 75-79 (Zhan Qingliang, Zhou Zhiyong, Ge Yaojun. 3-Dimensional large eddy simulation of circular cylinder at Re = 3900. Journal of Harbin Institute of Technology, 2015, 47(12): 75-79 (in Chinese)
|
[32] |
Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural networks: a strong baseline//International Joint Conference on Neural Networks, Anchorage, AK, USA, 14-19 MAY 2017: 1578-1585
|
[1] | Luo Renyu, Li Qizhi, Zu Gongbo, Huang Yunjin, Yang Gengchao, Yao Qinghe. A SUPER-RESOLUTION LATTICE BOLTZMANN METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3612-3624. DOI: 10.6052/0459-1879-24-248 |
[2] | Yan Panpan, Niu Qinglin, Gao Wenqiang, Dong Shikui. PREDICTION OF GROUND ROCKET EXHAUST PLUME FLOW FIELD BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 980-990. DOI: 10.6052/0459-1879-23-412 |
[3] | Chen Hao, Guo Mingming, Tian Ye, Chen Erda, Deng Xue, Le Jialing, Li Linjing. PROGRESS OF CONVOLUTION NEURAL NETWORKS IN FLOW FIELD RECONSTRUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2343-2360. DOI: 10.6052/0459-1879-22-130 |
[4] | Zhan Qingliang, Bai Chunjin, Ge Yaojun. FLUID FEATURE ANALYSIS BASED ON TIME HISTORY DEEP LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 822-828. DOI: 10.6052/0459-1879-21-524 |
[5] | Chen Jian, Wang Dongdong, Liu Yuxiang, Chen Jun. A RECURRENT CONVOLUTIONAL NEURAL NETWORK SURROGATE MODEL FOR DYNAMIC MESHFREE ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 732-745. DOI: 10.6052/0459-1879-21-565 |
[6] | Du Xiangbo, Chen Shaoqiang, Hou Jingyao, Zhang Fan, Hu Haibao, Ren Feng. WAKE RECOGNITION OF A BLUNT BODY BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 59-67. DOI: 10.6052/0459-1879-21-404 |
[7] | Wu Lei, Xiao Zuoli. SUBGRID-SCALE STRESS MODELING BASED ON ARTIFICIAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2667-2681. DOI: 10.6052/0459-1879-21-356 |
[8] | Jiang Zichao, Jiang Junyang, Yao Qinghe, Yang Gengchao. A FAST SOLVER BASED ON DEEP NEURAL NETWORK FOR DIFFERENCE EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1912-1921. DOI: 10.6052/0459-1879-21-040 |
[9] | Zhao Xizeng, Xu Tianyu, Xie Yulin, Lü Chaofan, Yao Yanming, Xie Jing, Chang Jiang. PREDICTION OF WAVE TRANSMISSION OF CULVERT BREAKWATER BASED ON CNN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 330-338. DOI: 10.6052/0459-1879-20-235 |
[10] | Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422 |
1. |
张强,李春,缪维跑,岳敏楠. 基于深度学习的翼型气动弹片流场参数预测. 热能动力工程. 2024(02): 162-168 .
![]() | |
2. |
闫盼盼,牛青林,高文强,董士奎. 基于卷积神经网络的地面尾喷焰流场预测. 力学学报. 2024(04): 980-990 .
![]() | |
3. |
战庆亮,葛耀君,白春锦. 流场特征识别的无量纲时程深度学习方法. 工程力学. 2023(02): 17-24 .
![]() | |
4. |
战庆亮,白春锦,葛耀君. 基于时程深度学习的桥面绕流表征与重构方法. 工程力学. 2023(09): 13-19 .
![]() | |
5. |
战庆亮,白春锦,葛耀君. 基于时程深度学习的流场特征分析方法. 力学学报. 2022(03): 822-828 .
![]() | |
6. |
战庆亮,白春锦,张宁,葛耀君. 基于时程卷积自编码的机翼绕流特征识别方法. 航空学报. 2022(11): 443-451 .
![]() | |
7. |
高怡心,谢心怡,许世杰,李光明,黄豪彩. 基于沿海声层析技术的水下目标探测技术. 兵工自动化. 2022(12): 30-34 .
![]() |