Citation: | Li Zigang, Yan Wang, Kang Jiaqi, Jiang Jun, Hong Ling. Data-driven global dynamics of the indian ocean. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2595-2602. DOI: 10.6052/0459-1879-21-218 |
[1] |
Kettyah CC, Andrew MM. The north atlantic oscillation as a source of stochastic forcing of the wind-driven ocean circulation. Dynamics of Atmospheres and Oceans, 2007, 43: 151-170 doi: 10.1016/j.dynatmoce.2006.12.002
|
[2] |
Poulain PM, Gerin R, Mauri E, el al. Wind effects on drogued and undrogued drifters in the eastern Mediterranean. Journal of Atmospheric and Oceanic Technology, 2009, 26: 1144-1156 doi: 10.1175/2008JTECHO618.1
|
[3] |
杜岩, 陈举, 经志友等. 南海开放共享航次关键科学问题的思考——从多尺度海洋动力学角度出发. 热带海洋学报, 2020, 39(6): 1-17 (Du Yan, Chen Ju, Jing Zhiyou, et al. Thoughts on the key scientific issues of Shiptime Sharing Project/Open Cruise in the South China Sea—From the perspective of multi-scale ocean dynamics. Journal of Tropical Oceanography, 2020, 39(6): 1-17 (in Chinese)
|
[4] |
郑瑞玺, 经志友, 罗士浩. 南海北部反气旋涡旋边缘的次中尺度动力过程分析. 热带海洋学报, 2018, 37(3): 19-25 (Zheng Ruixi, Jing Zhiyou, Luo Shihao. Analysis of sub-mesoscale dynamic processes in the periphery of anticyclonic eddy in the northern South China Sea. Journal of Tropical Oceanography, 2018, 37(3): 19-25 (in Chinese)
|
[5] |
Serra M, Sathe P, Rypina I, el al. Search and rescue at sea aided by hidden flow structures. Nature Communications, 2020, 11: 2525 doi: 10.1038/s41467-020-16281-x
|
[6] |
郭凯旋. 危险化学品海上漂移扩散数值模拟研究综述. 海洋预报, 2021, 38(2): 91-97 (Guo Kaixuan. Review on the numerical simulation of the drift and diffusion of marine hazardous chemicals. Marine Forecasts, 2021, 38(2): 91-97 (in Chinese)
|
[7] |
王驰, 梁法春, 何振楠等. 波浪作用下的海底管道溢油扩散运移规律. 河北工业科技, 2021, 38(3): 172-179 (Wang Chi, Liang Fachun, He Zhennan, et al. The law of diffusion and migration of oil spill from submarine pipelines under wave action. Hebei Journal of Industrial Science and Technology, 2021, 38(3): 172-179 (in Chinese)
|
[8] |
连汝续, 张燕玲, 黄兰. 引入地形因素的海洋动力学方程组整体弱解的稳定性. 河南师范大学学报(自然科学版), 2021, 49(3): 18-26 (Lian Ruxu, Zhang Yanling, Huang Lan. The stability of global weak solutions to the ocean dynamics equations with topography effects. Journal of Henan Normal University (Natural Science Edition)
|
[9] |
Varghese VA, Saha N. Investigation of stochastic nonlinear dynamics of ocean engineering systems through path integration. Physica D, 2020, 402(15): 132227
|
[10] |
Yeo K, Melnyk I. Deep learning algorithm for data-driven simulation of noisy dynamical system. Journal of Computational Physics, 2019, 376: 1212-1231 doi: 10.1016/j.jcp.2018.10.024
|
[11] |
Guo LL, Wu P, Lou SW. A multi-feature extraction technique based on principal component analysis for nonlinear dynamic process monitoring. Journal of Process Control, 2020, 85: 159-172 doi: 10.1016/j.jprocont.2019.11.010
|
[12] |
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 2009, 33: 795-814
|
[13] |
薛红娟, 顾耀林. 拓扑分析在海洋特征提取中的应. 计算机工程, 2009, 35(3): 263-265 (Xue Hongjuan, Gu Yaolin. Application of topological analysis in ocean feature extraction. Computer Engineering, 2009, 35(3): 263-265 (in Chinese) doi: 10.3969/j.issn.1000-3428.2009.03.090
|
[14] |
Capuano P, Lauro ED, Martino SD, et al. Analysis of water level oscillations by using methods of nonlinear dynamics. International Journal of Modern Physics B, 2009, 23(28): 5530-5542
|
[15] |
Dong Y, Qin SJ. A novel dynamic PCA algorithm for dynamic data modeling and process monitoring. Journal of Process Control, 2018, 67: 1-11 doi: 10.1016/j.jprocont.2017.05.002
|
[16] |
Schouten JC, Takens F, Bleek CM. Estimation of the dimension of a noisy attractor. Physical Review E, 1994, 50(3): 1851-1861 doi: 10.1103/PhysRevE.50.1851
|
[17] |
Röhrs J, Sutherland G, Jeans G, et al. Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. Journal of Operational Oceanography, 2016, 9(2): 126-138 doi: 10.1080/1755876X.2016.1248149
|
[18] |
Miron P, Beron-Vera FJ, Olascoaga MJ, et al. Markov-chain-inspired search for MH370. Chaos, 2019, 29: 041105 doi: 10.1063/1.5092132
|
[19] |
Grossi MD, Kubat M, Özgökmen TM. Predicting particle trajectories in oceanic flows using artificial neural networks. Ocean Modelling, 2020, 156: 101707 doi: 10.1016/j.ocemod.2020.101707
|
[20] |
Li ZG, Jiang J, Hong L, et al. A subdomain synthesis method for global analysis of nonlinear dynamical systems based on cell mapping. Nonlinear Dynamics, 2019, 95: 715-726 doi: 10.1007/s11071-018-4592-4
|
[21] |
Yue XL, Xu Y, Xu W, et al. Global invariant manifolds of dynamical systems with the compatible cell mapping method. International Journal of Bifurcation and Chaos, 2019, 29(8): 1950105 doi: 10.1142/S0218127419501050
|
[22] |
Xiong FR, Qin ZC, Ding Q, et al. Parallel cell mapping method for global analysis of high-dimensional nonlinear dynamical systems. Journal of Applied Mechanics, 2015, 82(11): 111010 doi: 10.1115/1.4031149
|
[23] |
徐伟, 岳晓乐, 韩群. 胞映射方法及其在非线性随机动力学中的应用. 动力学与控制学报, 2017, 15(3): 200-208 (Xu Wei, Yue Xiaole, Han Qun. Cell mapping method and its applications in nonlinear stochastic dynamical system. Journal of Dynamic and Control, 2017, 15(3): 200-208 (in Chinese) doi: 10.6052/1672-6553-2017-023
|
[24] |
徐伟, 孙春艳, 孙建桥等. 胞映射方法的研究和进展. 力学进展, 2013, 43(1): 91-100 (Xu Wei, Sun Chunyan, Sun Jianqiao, el al. Development and study on cell mapping method. Advances in mechanics, 2013, 43(1): 91-100 (in Chinese)
|
[25] |
Hsu CS. Cell to Cell Mapping: A Method of Global Analysis for Nonlinear Systems, Berlin: Springer, 1987
|
[26] |
Li ZG, Jiang J, Hong L, et al. On the data-driven generalized cell mapping. International Journal of Bifurcation and Chaos, 2019, 29(14): 1950204 doi: 10.1142/S0218127419502043
|
[27] |
Huang Y, Wu B, Li T, et al. Interdecadal Indian ocean basin mode driven by interdecadal pacific oscillation: A season-dependent growth mechanism. Journal of Climate, 2019, 32(7): 2057-2073 doi: 10.1175/JCLI-D-18-0452.1
|
[28] |
Maximenko N, Hafner J, Niiler P. Pathways of marine debris derived from trajectories of Lagrangian drifters. Marine Pollution Bulletin, 2012, 65(1-3): 51-62 doi: 10.1016/j.marpolbul.2011.04.016
|
[29] |
Xie JP, Zhu J. A dataset of global ocean surface currents for 1999-2007 derived from argo float trajectories: A comparison with surface drifter and TAO measurements. Atmospheric & Oceanic Science Letters, 2009, 2(2): 97-102
|
[30] |
LaCasce JH. Statistics from Lagrangian observations. Progress in Oceanography, 2018, 77: 1-29
|
[31] |
Chevillard L, Meneveau C. Lagrangian dynamics and statistical geometric structure of turbulence. Physical Review Letters, 2006, 97: 174501 doi: 10.1103/PhysRevLett.97.174501
|
[32] |
朱金杰, 陈朕, 孔琛等. 基于大偏差理论的随机动力学研究. 力学进展, 2020, 50(1): 202010 (Zhu Jinjie, Chen Zheng, Kong Chen, et al. The researches on the stochastic dynamics based on the large deviation theory. Advances in Mechanics, 2020, 50(1): 202010 (in Chinese)
|
[33] |
Lev MV, Lab S. Experimental drift mapping of Indian ocean gyre aircraft debris. Open Journal of Applied Sciences, 2016, 6: 95-99
|
[34] |
Schott FA, Xie SP, McCreary JP. Indian ocean circulation and climate variability. Reviews of Geophysics, 2009, 47: 2007RG000245
|
[35] |
Sun JQ, Xiong FR, Schutze O, et al. Cell Mapping Methods− Algorithmic Approaches and Applications. Springer, Berlin, 2019
|
[36] |
Maximenko N, Hafner J. Marine debris drift model simulates MH370 crash site and flow paths//IPRC, Honolulu, 2015
|
[1] | Yang Zhaohu, Li Xianfeng, Li Denghui, Zhou Biliu. GLOBAL DYNAMICS OF A PIECEWISE ASYMMETRIC OSCILLATOR UNDER QUASI-PERIODIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3012-3022. DOI: 10.6052/0459-1879-24-099 |
[2] | Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255 |
[3] | Guo Chongchong, Wu Wenhua, Wu Guodong, Cao Guangming, Lü Baicheng. MULTIBODY DYNAMICAL MODELING AND ANALYSIS OF MARINE NUCLEAR POWER PLATFORM POSITIONING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1443-1455. DOI: 10.6052/0459-1879-21-690 |
[4] | Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553 |
[5] | Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167 |
[6] | Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431 |
[7] | GLOBAL DYNAMICS SIMULATION OF MULTIBODY SYSTEMS WITH VARIABLE TOPOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 633-637. DOI: 10.6052/0459-1879-1996-5-1995-380 |
[8] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[9] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
[10] | 串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772 |