EI、Scopus 收录
中文核心期刊
Wang Chunhui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. DOI: 10.6052/0459-1879-21-217
Citation: Wang Chunhui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. Research on vertical movement of cylindrical structure out of water and breaking through ice layer based on S-ALE method. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. DOI: 10.6052/0459-1879-21-217

RESEARCH ON VERTICAL MOVEMENT OF CYLINDRICAL STRUCTURE OUT OF WATER AND BREAKING THROUGH ICE LAYER BASED ON S-ALE METHOD

  • Received Date: May 07, 2021
  • Accepted Date: October 06, 2021
  • Available Online: October 07, 2021
  • The previous studies on the vertical penetration of structures through level ice mostly did not consider the water action, which was inconsistent with the actual application scenarios. In this paper, a numerical simulation method of ice-water-structure interaction based on structured-arbitrary Lagrange Euler (S-ALE) fluid-structure coupling method and penalty function contact algorithm is established by using LS-DYNA finite element software. Eulerian algorithm is used to describe air and water areas, Lagrangian algorithm is used to describe cylinder structure and level ice structure, and elastic-plastic strain rate model is used to characterize the mechanical properties of ice materials. Self-built test bench for vertical penetration of cylinder through level ice verified the feasibility of finite element method to calculate the interaction between structure and level ice problem. By simulating the ice-breaking process of cylinder vertical upward water breakthrough, it is compared with the ice-breaking process of cylinder vertical penetration in waterless environment. The results show that there is "water cushion effect" in the interaction between structure and level ice in water environment; The extreme value of ice breakthrough load has no significant change with the presence or absence of water; The duration of ice load when the structure breaks through level ice in water environment is obviously longer than that in waterless environment.The elastic deformation stage of level ice in water environment is longer, and the deflection change of level ice is greater than that in waterless environment. The research results of this paper provide a research basis for strength calculation and optimization design of ice-breaking structure with vertical vertical upward water breakthrough in polar ice area.
  • [1]
    Lindqvist G. A Straightforward method for calculation of ice resistance of ships//10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea: POAC, 1989
    [2]
    Riska K. Models of ice-structure contact for engineering applications. Studies in Applied Mechanics, 1995, 42(6): 77-103
    [3]
    Aksnes V. A simplified interaction model for moored ships in level ice. Cold Regions Science & Technology, 2010, 63(1-2): 29-39
    [4]
    Tan X. Numerical investigation of ship's continuous-mode icebreaking in level ice. [PhD Thesis]. Torgarden: Norwegian University of Science & Technology, 2014
    [5]
    钱源. 垂向破冰冰载荷计算方法研究. [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2020

    Qian Yuan. Study on the calculation method for the ice-load of vertical ice-breaking. [Master Thesis]. Harbin: Harbin Engineering University, 2020 (in Chinese)
    [6]
    孟祥斌. 潜艇上浮破冰作用力的研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Meng Xiangbin. Research on the force of submarine to destroy the ice layer upwards. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
    [7]
    叶礼裕, 王超, 郭春雨等. 潜艇破冰上浮近场动力学模型. 中国舰船研究, 2018, 13(2): 51-59

    Ye Liyu, Wang Chao, Guo Chunyu. et al. Peri-dynamic model for submarine surfacing through ice. Chinese Journal of Ship Research, 2018, 13(2): 51-59 (in Chinese)
    [8]
    Ehlers S, Kujala P. Optimization-based material parameter identification for the numerical simulation of sea ice in four-point bending. Engineering for the Maritime Enviroument, 2013, 228(1): 70-80
    [9]
    Polach V, Franzvon RU. Numerical and analysis of the bendingstrength of model−scale ice. Cold Regions Science & Technology, 2015, 118: 91-104
    [10]
    Gagnon RE. A numerical model of ice crushing using a foam analogue. Cold Regions Science and Technology, 2011, 65: 335-350
    [11]
    Wang J, Derradji-Aouat A. Numerical assessment for stationary structure (Kulluk) in moving broken ice//Proceedings of the 21st International Conference on Port and Ocean Engineering under Arctic Conditions, July 10-14, 2011, Montreal, Canada, POAC11-172
    [12]
    Ranta J, Polojärvi A, Tunki J. The statistical analysis of peak ice loads in a simulated ice-structure interaction process. Cold Regions Science and Techonology, 2016, 133: 46-55
    [13]
    郭春雨, 李夏炎, 王帅等. 冰区航行船舶碎冰阻力预报数值模拟方法. 哈尔滨工程大学学报, 2016, 37(2): 145-150 + 156

    Guo Chunyu, Li Xiayan, Wang shuai, et al. A numerical simulation method for resistance prediction of ship in pack ice. Journal of Harbin Engineering University, 2016, 37(2): 145-150 + 156 (in Chinese)
    [14]
    Wang C, Hu XH, Tian TP, et al. Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 414-427
    [15]
    黄焱, 史庆增, 宋安. 冰温度膨胀力的有限元分析. 水利学报, 2005, 36(3): 314-320

    Huang Yan, Shi Qingzeng, Song An. Finite element analysis of ice temperature expansion force. Journal of Hydraulic Engineering, 2005, 36(3): 314-320 (in Chinese)
    [16]
    任奕舟, 邹早建. 破冰船在冰层中连续破冰时的冰阻力预报. 上海交通大学学报, 2016, 50(8): 1152-1157

    Ren Yizhou, Zou Zaojian. Ice resistance prediction of an icebreaker during continuous icebreaking in level ice. Journal of Chongqing University. 2016, 50(8): 1152-1157 (in Chinese)
    [17]
    王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究. [博士论文]. 上海: 上海交通大学, 2019

    Wang Feng. Numerical research on the interactions between marine structures and level ice based on cohesive element model. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese)
    [18]
    Chen Z, He YP, Gu YB, et al. A novel method for numerical simulation of the interaction between level ice and marine structures. Journal of Marine Science and Technology, 2021, 26: 1170-1183
    [19]
    王明振, 曹东风, 吴彬等. 基于S-ALE流固耦合方法的飞机水上迫降动力学数值分析. 重庆大学学报, 2020, 43(6): 21-29 (Wang Mingzhen, Cao Dongfeng, Wu Bin, et al. Numerical analysis of aircraft dynamic behavior in ditchng based on S-ALE fluid-structure interaction method. Journal of Chongqing University, 2020, 43(6): 21-29 (in Chinese)
    [20]
    Wang J, Derradji-Aouat A. Ship performance in broken ice floes-Preliminary numerical simulations//Institute for Ocean Technology, National Research Council, St. John’s, NL, Canada. Report No. TR-2010-24
    [21]
    Wang J, Derradji-Aouat A. Implementation, verification and validation of the multi-surface failure envelope for ice in explicit FEA//20th International Conference on Port and Ocean Engineering under Arctic Conditions, June 9-12, 2009, Lulea, Sweden, POAC09-112: IR-2009-16
    [22]
    Carney KS, Benson DJ, Lee R. A high strain rate model with failure for ice in LS-DYNA. International Journal of Solids and Structures, 2006, 43(25-26): 1820-7839
    [23]
    Das J, Polic D, Ehlers S, et al. Numerical simulation of an ice beam in four-point bending using SPH//Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, 2014
    [24]
    Sazidy M, Daley C, Colbourne B, et al. Effect of ship speed on level ice edge breaking//International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2014, 45516: V08BT06A034
    [25]
    Sánchez J, Pedroche DA, Varas D, et al. Numerical modeling of ice behavior under high velocity impacts. International Journal of Solids and Structures, 2012, 49(14): 1919-1927 doi: 10.1016/j.ijsolstr.2012.03.038
    [26]
    Petrovic JJ. Review mechanical properties of ice and snow. Journal of Materials Science, 2003, 38(1): 1-6 doi: 10.1023/A:1021134128038
    [27]
    Sodhi DS. Vertical penetration of floating ice sheets. International Journal of Solids and Structures, 1998, 35(31-32): 425-429
    [28]
    Kujala P, Riska K, Varsta P. Results from in situ four point bending tests with Baltic Sea ice//Proceedings of IAHR Symposium On Ice Problems, Helsinki, Finland, 1990
    [29]
    肖赞. 巴西试验法测定冰力学性质的可靠性研究. [硕士论文]. 大连: 大连理工大学, 2017

    Xiao Zan. Research on reliability of brazilian test method to determine the mechanical properties of ice. [Master Thesis]. Dalian: Dalian University of Technology, 2017 (in Chinese)
    [30]
    陈光茂, 郑小波, 毋晓妮等. 二维楔形体入水问题的数值和实验研究. 舰船科学技术, 2021, 43(1): 53-60

    Chen Guangmao, Zheng Xiaobo, Wu Xiaoni, et al. Numerical and experimental study of water entry problem of two-dimensional wedge. Ship Science and Technology, 2021, 43(1): 53-60 (in Chinese)
    [31]
    Zhao R, Faltinsen O. Water entry of two-dimensional bodies. Journal of Fluid Mechanics, 1993, 246: 593-612
    [32]
    韩文栋, 张健, 刘海冬等. 考虑水介质作用的船冰碰撞解耦方法及载荷预报. 舰船科学技术, 2017, 39(11): 17-21

    Han Wendong, Zhang Jian, Liu Haidong, et al. Considering the action of the water medium in decoupling method and load forecast of the ship ice collision. Ship Science and Technology, 2017, 39(11): 17-21 (in Chinese)
  • Related Articles

    [1]Li Heng, Jin Ke, Kou Yong, Li Kai, Wang Bin, Ye Liuqing. AN EFFICIENT NUMERICAL SIMULATION METHOD FOR HALL ELECTRIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 79-88. DOI: 10.6052/0459-1879-24-315
    [2]Zhang Yonglong, Cao Shunxiang. NUMERICAL SIMULATION STUDY OF UNDERWATER ACOUSTIC ATTENUATION EFFECTS BY BUBBLE CURTAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 31-42. DOI: 10.6052/0459-1879-24-383
    [3]Wang Jie, Li Sihai, Zhang Qingbo. SIMULATION OF CRACK PROPAGATION OF ROCK BASED ON SPLITTING ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 105-118. DOI: 10.6052/0459-1879-14-239
    [4]Liu Feng, Zheng Hong, Li Chunguang. THE NMM-BASED EFG METHOD AND SIMULATION OF CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582-590. DOI: 10.6052/0459-1879-13-430
    [5]Geng Yunfei Chao Yan. Numerical investigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446. DOI: 10.6052/0459-1879-2011-3-lxxb2010-732
    [6]Zhenpeng Liao, Heng Liu, Zhinan Xie. An explicit method for numerical simulation of wave motion---1-D wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 350-360. DOI: 10.6052/0459-1879-2009-3-2007-635
    [7]Jianqiang Chen, Yifeng Zhang, Dingwu Jiang, Meiliang Mao. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743. DOI: 10.6052/0459-1879-2008-6-2008-020
    [8]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [9]Zheng Wu. On the numerical simulation of perturbation's propagation and development in traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 785-791. DOI: 10.6052/0459-1879-2006-6-2005-392
    [10]CRACK TIP SUPERBLUNTING: EXPERIMENT, THEORY AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 468-478. DOI: 10.6052/0459-1879-1993-4-1995-667
  • Cited by

    Periodical cited type(15)

    1. 方登建,刁震霆,许可. 冰载荷作用下不同航行体头型的力学响应分析. 兵器装备工程学报. 2025(02): 112-121 .
    2. 张润东,段金雄,孙铁志,张桂勇. 自由面碎冰浮冰环境高速入水动力学特性. 空气动力学学报. 2024(01): 100-112 .
    3. 张子阳,刘昆,王加夏,俞同强,高振国,刘赫崴. 考虑桩-水-土耦合的船桥碰撞损伤特性. 船舶工程. 2024(01): 65-78 .
    4. 方登建,刁震霆,金凯. 冲击载荷作用下航行体典型部段结构力学分析. 海军工程大学学报. 2024(02): 93-100 .
    5. 贡力,董洲全,杨腾腾,崔越,杜云飞. 水介质中冰-桥墩碰撞动力响应分析. 振动与冲击. 2024(11): 72-82 .
    6. 余志祥,骆泓锦,张丽君,骆丽茹,金云涛,赵雷. 考虑透水效应的泥石流柔性防护网耦合分析方法. 岩土工程学报. 2024(08): 1695-1702 .
    7. 姚熊亮,赵斌,马贵辉. 跨介质航行体出水问题研究现状与展望. 航空学报. 2024(14): 1-26 .
    8. 鹿麟,陈凯敏,侯宇,胡彦晓,张东晓,高词松,杨哲. 冰孔约束下弹丸倾斜入水空泡演化特性实验研究. 兵工学报. 2024(09): 3082-3090 .
    9. 黄振贵,王浩,蔡晓伟,刘想炎,陈志华,秦健,郝戌龙. 速度对射弹垂直破冰入水空泡流动特性的影响. 兵工学报. 2024(10): 3371-3384 .
    10. 付志强,李志鹏,孙龙泉,胡承龙. 碎冰对出水航行体载荷特性影响试验研究. 力学学报. 2024(11): 3188-3201 . 本站查看
    11. 黄静泊,李小帅,谢晶,王扬卫. 316L不锈钢蜂窝夹芯结构的抗爆性能研究与优化. 弹箭与制导学报. 2024(06): 1-12 .
    12. 姬贺港,张健,李越. 基于黏聚单元法的冰-柱碰撞流固耦合计算方法研究. 振动与冲击. 2023(11): 42-47+74 .
    13. 丛滨,慕鹏,宋星晨,李陈峰. 考虑船-冰-水耦合的寒地航行实体靶船载荷响应分析. 舰船科学技术. 2023(12): 1-7 .
    14. 谷鸿平,陈达,张立建,吕永柱,栗保华. 基于JWL-Miller状态方程非理想炸药水中爆炸载荷模拟. 兵器装备工程学报. 2023(10): 293-299 .
    15. 姚学昊,陈丁,武立伟,黄丹. 流固耦合破坏分析的多分辨率PD-SPH方法. 力学学报. 2022(12): 3333-3343 . 本站查看

    Other cited types(17)

Catalog

    Article Metrics

    Article views (2272) PDF downloads (194) Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return