Citation: | Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. Discontinuous Galerkin FEM method for the coupling of compressible two-phase flow and poromechanics. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2235-2245. DOI: 10.6052/0459-1879-21-177 |
[1] |
李熙喆, 卢德唐, 罗瑞兰等. 复杂多孔介质主流通道定量判识标准. 石油勘探与开发, 2019, 46(5): 943-949 (Li Xizhe, Lu Detang, Luo Ruilan, et al. Quantitative criteria for identifying main flow channels in complex porous media. Petroleum Exploration and Development, 2019, 46(5): 943-949 (in Chinese) doi: 10.1016/S1876-3804(19)60251-X
|
[2] |
Ma TR, Rutqvist J, Oldenburg CM, et al. Fully coupled two-phase flow and poromechanics modeling of coalbed methane recovery: Impact of geomechanics on production rate. Journal of Natural Gas Science and Engineering, 2017, 45: 474-486 doi: 10.1016/j.jngse.2017.05.024
|
[3] |
沈伟军, 李熙喆, 鲁晓兵等. 基于等温吸附的页岩水分传输特征研究. 力学学报, 2019, 51(3): 932-939 (Shen Weijun, Li Xizhe, Lu Xiaobing, et al. Study on moisture transport characteristics of shale based on isothermal adsorption. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 932-939 (in Chinese) doi: 10.6052/0459-1879-18-229
|
[4] |
Rutqvist J, Vasco DW, Myer L. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria. International Journal of Greenhouse Gas Control, 2010, 4(2): 225-230 doi: 10.1016/j.ijggc.2009.10.017
|
[5] |
Jha B, Juanes R. A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotechnica, 2007, 2(3): 139-153 doi: 10.1007/s11440-007-0033-0
|
[6] |
Kim J, Tchelepi HA, Juanes R. Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits. Computer Methods in Applied Mechanics & Engineering, 2011, 200(23-24): 2094-2116
|
[7] |
Lu X, Wheeler MF. Three-way coupling of multiphase flow and poromechanics in porous media. Journal of Computational Physics, 2020, 401: 109053 doi: 10.1016/j.jcp.2019.109053
|
[8] |
Bjornara TI, Nordbotten JM, Park J. Vertically integrated models for coupled two‐phase flow and geomechanics in porous media. Water Resources Research, 2016, 52(2): 1398-1417 doi: 10.1002/2015WR017290
|
[9] |
Dong Y, Li P, Tian W, et al. An equivalent method to assess the production performance of horizontal wells with complicated hydraulic fracture network in shale oil reservoirs. Journal of Natural Gas Science and Engineering, 2019, 71: 102975 doi: 10.1016/j.jngse.2019.102975
|
[10] |
Khoei AR, Hosseini N, Mohammadnejad T. Numerical modeling of two-phase fluid flow in deformable fractured porous media using the extended finite element method and an equivalent continuum model. Advances in Water Resources, 2016, 94: 510-528 doi: 10.1016/j.advwatres.2016.02.017
|
[11] |
Gläser D, Helmig R, Flemisch B, et al. A discrete fracture model for two-phase flow in fractured porous media. Advances in Water Resources, 2017, 110: 335-348 doi: 10.1016/j.advwatres.2017.10.031
|
[12] |
Salinas P, Pavlidis D, Xie Z, et al. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media. Journal of Computational Physics, 2018, 352: 602-614 doi: 10.1016/j.jcp.2017.09.058
|
[13] |
王理想, 唐德泓, 李世海等. 基于混合方法的二维水力压裂数值模拟. 力学学报, 2015, 47(6): 973-983 (Wang Lixiang, Tang Dehong, Li Shihai, Wang Jie, Feng Chun. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 973-983 (in Chinese) doi: 10.6052/0459-1879-15-097
|
[14] |
Jha B, Juanes R. Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering. Water Resources Research, 2014, 50(5): 3776-3808 doi: 10.1002/2013WR015175
|
[15] |
Rutqvist J. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computers & Geosciences, 2011, 37(6): 739-750
|
[16] |
Arnold DN, Brezzi F, Marini BCD. Unified analysis of discontinuous Galerkin methods for elliptic problems. Siam Journal on Numerical Analysis, 2002, 39(5): 1749-1779 doi: 10.1137/S0036142901384162
|
[17] |
贺立新, 张来平, 张涵信. 间断Galerkin有限元和有限体积混合计算方法研究. 力学学报, 2007, 23(1): 15-22 (He Lixin, Zhang Laiping, Zhang Hanxin. A finite element/finite volume mixed solver on hybrid grids. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 15-22 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.01.003
|
[18] |
刘冬欢, 郑小平, 刘应华. 不连续温度场问题的间断Galerkin方法. 力学学报, 2010, 42(1): 74-82 (Liu Donghuan, Zheng Xiaoping, Liu Yinghua. Discontinuous Galerkin method for discontinuous temperature field problems. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 74-82 (in Chinese) doi: 10.6052/0459-1879-2010-1-2009-003
|
[19] |
Cockburn B, Karniadakis GE, Shu CW. Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, 2000
|
[20] |
Shu CW. A brief survey on discontinuous Galerkin methods in computational fluid dynamics. Advances in Mechanics, 2013, 43(6): 541-553
|
[21] |
Cappanera L, Rivière B. Discontinuous Galerkin method for solving the black-oil problem in porous media. Numerical Methods for Partial Differential Equations, 2019, 35(2): 761-89 doi: 10.1002/num.22324
|
[22] |
Dedner A, Kane B, Klofkorn R, et al. Python framework for hp-adaptive discontinuous Galerkin methods for two-phase flow in porous media. Applied Mathematical Modelling, 2019, 67(3): 179-200
|
[23] |
Klieber W, Riviere B. Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Computer Methods in Applied Mechanics and Engineering, 2006, 196(1-3): 404-419 doi: 10.1016/j.cma.2006.05.007
|
[24] |
Epshteyn Y, Rivière B. Fully implicit discontinuous finite element methods for two-phase flow. Applied Numerical Mathematics, 2007, 57(4): 383-401 doi: 10.1016/j.apnum.2006.04.004
|
[25] |
李子然, 吴长春. 弹性力学问题中的间断Galerkin有限元法. 上海交通大学学报, 2003(5): 770-773 (Li Ziran, Wu Changchun. Local discontinuous Galerkin method in elastic mechanics. Journal of Shanghai Jiaotong University, 2003(5): 770-773 (in Chinese) doi: 10.3321/j.issn:1006-2467.2003.05.035
|
[26] |
陈韵骋, 黄建国, 徐一峰. 线弹性力学问题局部间断有限元方法的后验误差估计. 上海交通大学学报, 2011, 45(12): 1857-1862 (Chen Yuncheng, Huang Jianguo, Xu Yifeng. A posteriori error estimates for local discontinuous galerkin methods of linear elasticity. Journal of Shanghai Jiaotong University, 2011, 45(12): 1857-1862 (in Chinese)
|
[27] |
Liu R, Wheeler MF, Dawson CN, et al. On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41-44): 3499-3510 doi: 10.1016/j.cma.2009.07.005
|
[28] |
Liu R, Liu Z, Wheeler MF. A DG-based interface element method for modeling hydraulic fracturing in porous media. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113284 doi: 10.1016/j.cma.2020.113284
|
[29] |
Cusini M, White JA, Castelletto N, et al. Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45: 563-584 doi: 10.1002/nag.3168
|
[30] |
Pruess K, Oldenburg CM, Moridis GJ. TOUGH2 user’s guide version 2. Office of Scientific & Technical Information Technical Reports, 1999
|
[31] |
Linstrom PJ, Mallard WG. The NIST chemistry webbook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 2001, 46(5): 1059-1063
|
[32] |
Wang HF. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, 2000
|
[33] |
Flemisch B, Berre I, Boon W, et al. Benchmarks for single-phase flow in fractured porous media. Advances in Water Resources, 2018, 111: 239-258
|
[1] | Huang Congyi, Zhao Weiwen, Wan Decheng. SIMULATION OF THE MOTION OF AN ELASTIC HULL IN REGULAR WAVES BASED ON MPS-FEM METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332. DOI: 10.6052/0459-1879-22-468 |
[2] | Cheng Linsong, Du Xulin, Rao Xiang, Cao Renyi, Jia Pin. A NUMERICAL SIMULATION APPROACH FOR EMBEDDED DISCRETE FRACTURE MODEL COUPLED GREEN ELEMENT METHOD BASED ON TWO SETS OF NODES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2892-2903. DOI: 10.6052/0459-1879-22-250 |
[3] | Liu Yu, Deng Jiayu, Wang Chengen, Su Hongxin. A MONOLITHIC METHOD FOR SIMULATING CONJUGATE HEAT TRANSFER VIA QUASI-IMPLICIT SCHEME OF CHARACTERISTIC-BASED SPLIT FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 986-997. DOI: 10.6052/0459-1879-20-299 |
[4] | Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. DOI: 10.6052/0459-1879-13-151 |
[5] | Guo Pan, Wu Wenhua, Wu Zhigang. TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED THERMO-ELASTIC WAVE OF NON-FOURIER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 447-450. DOI: 10.6052/0459-1879-12-217 |
[6] | Lu Hongqiang Zhu Guoxiang Song Jiangyong Wu Yizhao. High-order discontinuous galerkin solution of linearized Euler equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 621-624. DOI: 10.6052/0459-1879-2011-3-lxxb2010-077 |
[7] | Donghuan Liu, Xiaoping Zheng, Yinghua Liu. discontinuous galerkin method for discontinuous temperature field problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 74-82. DOI: 10.6052/0459-1879-2010-1-2009-003 |
[8] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[9] | Jiachun Li. NUMERICAL SIMULATION OF MARANGONI CONVECTION IN THE FLOATING ZONE UNDER MICROGRAVITY BY FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 149-156. DOI: 10.6052/0459-1879-1991-2-1995-821 |
1. |
张赛,杨震,杜向南,罗亚中. 基于轨道可达域的机动航天器接近威胁规避方法. 航空学报. 2024(04): 248-261 .
![]() | |
2. |
肖前,李林澄,张景瑞. 多星机动接近威胁下航天器反包围规避方法. 宇航学报. 2024(10): 1578-1587 .
![]() | |
3. |
王昌涛 ,代洪华 ,张哲 ,汪雪川 ,岳晓奎 . 并行加速的局部变分迭代法及其轨道计算应用. 力学学报. 2023(04): 991-1003 .
![]() | |
4. |
张赛 ,杨震 ,罗亚中 . 地固系下航天器单脉冲轨道机动可达域求解算法. 力学与实践. 2022(06): 1286-1296 .
![]() | |
5. |
李翔宇,乔栋,程潏. 三体轨道动力学研究进展. 力学学报. 2021(05): 1223-1245 .
![]() |