Citation: | Pu Cheng, Liu Fengyin, Wang Shaohan, Zhong Lijia. The force parameter and profile change of liquid bridge between two unequal spheres—an experiment study. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2090-2099. DOI: 10.6052/0459-1879-21-019 |
[1] |
De Bisschop FRE, Rigole WJL. A physical model for liquid capillary bridges between adsorptive solid spheres: the nodoid of plateau. Journal of Colloid and Interface Science, 1982, 88(1): 117-128 doi: 10.1016/0021-9797(82)90161-8
|
[2] |
Lian GP, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid and Interface Science, 1993, 161(1): 138-147 doi: 10.1006/jcis.1993.1452
|
[3] |
Darabi P, Li TW, Pougatch K, et al. Modeling the evolution and rupture of stretching pendular liquid bridges. Chemical Engineering Science, 2010, 65(15): 4472-4483 doi: 10.1016/j.ces.2010.04.003
|
[4] |
Pitois O, Moucheront P, Chateau X. Rupture energy of a pendular liquid bridge. European Physical Journal B, 2001, 23(1): 79-86 doi: 10.1007/s100510170084
|
[5] |
Pitois O, Moucheront P, Chateau X. Liquid bridge between two moving spheres: an experimental study of viscosity effects. Journal of Colloid and Interface Science, 2000, 231(1): 26-31 doi: 10.1006/jcis.2000.7096
|
[6] |
Mazzone DN, Tardos GI, Pfeffer R. The effect of gravity on the shape and strength of a liquid bridge between two spheres. Journal of Colloid and Interface Science, 1986, 113(2): 544-556 doi: 10.1016/0021-9797(86)90187-6
|
[7] |
Bayramli E, Abou-Obeid A, Van De Ven TGM. Liquid bridges between spheres in a gravitational field. Journal of Colloid and Interface Science, 1987, 116(2): 490-502 doi: 10.1016/0021-9797(87)90145-7
|
[8] |
Farmer TP, Bird JC. Asymmetric capillary bridges between contacting spheres. Journal of Colloid and Interface Science, 2015, 454(4): 192-199
|
[9] |
Soulié F, Cherblanc F, El Youssouh MS, et al. Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(3): 213-228 doi: 10.1002/nag.476
|
[10] |
Willett CD, Adams MJ, Johnson SA, et al. Capillary bridges between two spherical bodies. Langmuir, 2000, 16(24): 9396-9405 doi: 10.1021/la000657y
|
[11] |
Lu N, Lechman J, Miller KT. Experimental verification of capillary force and water retention between uneven-sized spheres. Journal of Engineering Mechanics, 2008, 134(5): 385-395 doi: 10.1061/(ASCE)0733-9399(2008)134:5(385)
|
[12] |
Rossetti D, Pepin X, Simons SJR. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid and Interface Science, 2003, 261(1): 161-169 doi: 10.1016/S0021-9797(03)00043-2
|
[13] |
Bozkurt MG, Fratta D, Likos WJ. Capillary forces between equally sized moving glass beads: an experimental study. Canadian Geotechnical Journal, 2017, 54(5): 1300-1309
|
[14] |
Lievano D, Velankar S, McCarthy JJ. The rupture force of liquid bridges in two and three particle systems. Powder Technology, 2017, 313(2): 18-26
|
[15] |
Wang JP, Gallo E, Franois B. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 2017, 305(6): 89-98
|
[16] |
刘建林, 李广帅, 聂志欣. 轴对称液桥的形貌与液桥力. 西华大学学报(自然科学版), 2010, 29(3): 1-5 (Liu Jianlin, Li Guangshuai, Nie Zhixin. Morphology and liquid bridge force of an axisymmetric liquid bridge. Journal of Xihua University (Natural Science)
|
[17] |
王学卫, 于洋. 重力影响下板间液桥断裂距离研究. 实验力学, 2012, 27(1): 70-76 (Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
|
[18] |
庄大伟, 杨艺菲, 胡海涛等. 竖直平板间液桥形状的观测与预测模型开发. 化工学报, 2016, 67(6): 2224-2229 (Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
|
[19] |
朱朝飞, 贾建援, 付红志等. 狭长平行板间液桥形态及受力研究. 工程力学, 2016, 33(6): 222-229 (Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
|
[20] |
王辉, 焦杨, 辛文宇等. 湿颗粒分离中的液桥力作用及临界分离初速度. 大学物理, 2015, 34(7): 44-48 (Wang Hui, Jiao Yang, Xin Wenyu, et al. Effect of liquid bridge force and critical velocity for the separation of wet granule. College Physics, 2015, 34(7): 44-48 (in Chinese)
|
[21] |
蒲诚, 刘奉银, 张昭等. 不同含液量下颗粒间液桥力及形态的试验研究. 水利学报, 2020, 51(1): 81-91 (Pu Cheng, Liu Fengyin, Zhang Zhao, et al. Liquid force and profile between two moving sphere particles under different liquid content condition: An experiment study. Journal of Hydraulic Engineering, 2020, 51(1): 81-91 (in Chinese)
|
[22] |
余莲英, 周丹洋, 徐春晖等. 基于拟土颗粒DEM数值模型的静态液桥力测试方法. 中国农业大学学报, 2017, 22(11): 68-74 (Yu Lianying, Zhou Danyang, Xu Chunhui, et al. Method of measuring the static liquid bridge force of soil particles based on DEM modeling. Journal of China Agricultural University, 2017, 22(11): 68-74 (in Chinese) doi: 10.11841/j.issn.1007-4333.2017.11.07
|
[23] |
Kazuyuki H, Kazuo T, Koichi I. The capillary binding force of a liquid bridge. Powder Technology, 1974, 10(2): 231-242
|
[24] |
Fisher RA. On the capillary forces in an ideal soil: correction of formulae given by WB Haines. The Journal of Agricultural Science, 1926, 16(3): 492-505 doi: 10.1017/S0021859600007838
|
[25] |
Gillespie T, Settineri WJ. The effect of capillary liquid on the force of adhesion between spherical solid particles. Journal of Colloid and Interface Science, 1967, 24(2): 199-202 doi: 10.1016/0021-9797(67)90220-2
|
[26] |
Clark WC, Haynes JM, Mason G. Liquid bridges between a sphere and a plane. Chemical Engineering Science, 1968, 23(7): 810-812 doi: 10.1016/0009-2509(68)85021-3
|
[27] |
张昭, 刘奉银, 齐吉琳等. 粗颗粒间液桥毛细力演化规律的动态计算方法. 岩土力学, 2016, 37(8): 2263-2270 (Zhang Zhao, Liu Fengyin, Qi Jiling, et al. A dynamic calculation method for evolution law of capillarity forces of liquid bridge between coarse particles. Rock and Soil Mechanics, 2016, 37(8): 2263-2270 (in Chinese)
|
[28] |
贺炜, 赵明华, 陈永贵等. 土-水特征曲线滞后现象的微观机制与计算分析. 岩土力学, 2010, 31(4): 1078-1083 (He Wei, Zhao Minghua, Chen Yonggui, et al. Theoretical study of microscopical mechanisms and computational method of hysteresis in SWCCs. Rock and Soil Mechanics, 2010, 31(4): 1078-1083 (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
|
[29] |
周凤玺, 曹小林, 马强. 颗粒间的毛细作用以及吸应力特征曲线分析. 岩土力学, 2017, 38(7): 2036-2042 (Zhou Fengxi, Cao Xiaolin, Ma Qiang. Analysis of capillary cohesion and suction stress characteristic curve between two spheres. Rock and Soil Mechanics, 2017, 38(7): 2036-2042 (in Chinese)
|
[30] |
杜友耀, 李锡夔. 二维液桥计算模型及湿颗粒材料离散元模拟. 计算力学学报, 2015, 32(4): 496-502 (Du Youyao, Li Xikui. 2D computational model of liquid bridge and DEM simulation of wet granular materials. Chinese Journal of Computational Mechanics, 2015, 32(4): 496-502 (in Chinese) doi: 10.7511/jslx201504009
|
[31] |
Adams MJ, Johnson SA, Seville JPK, et al. Mapping the influence of gravity on pendular liquid bridges between rigid spheres. Langmuir, 2002, 18(16): 6180-6184 doi: 10.1021/la011823k
|
[1] | Zhang Shengting, Li Jing, Chen Zhangxing, Bi Ran, Qiang Zhuang, Wu Keliu, Wang Ziyi. STUDY ON THE EFFECT OF DYNAMIC INTERFACIAL PROPERTIES OF LIQUID BRIDGES ON SPONTANEOUS LIQUID-LIQUID IMBIBITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1163-1177. DOI: 10.6052/0459-1879-23-444 |
[2] | Li Guoqiang, Song Kuihui, Yi Shihe, Zhang Weiguo, Yang Yongdong, Yuan Mingchuan, Wu Linxin. TEST RESEARCH FOR ACTIVE CONTROL OF AIRFOIL REVERSE FLOW DYNAMIC STALL BASED ON TRAILING EDGE FLAP[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2453-2467. DOI: 10.6052/0459-1879-23-244 |
[3] | Liu Fengyin, Jiang Jingxi, Li Dongdong. STUDY ON THE EVOLUTION OF LIQUID BRIDGE FORCE BETWEEN FLAKY PARTICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668. DOI: 10.6052/0459-1879-21-628 |
[4] | Wang Chunhui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. RESEARCH ON VERTICAL MOVEMENT OF CYLINDRICAL STRUCTURE OUT OF WATER AND BREAKING THROUGH ICE LAYER BASED ON S-ALE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. DOI: 10.6052/0459-1879-21-217 |
[5] | Du Yan, Huo Leichen, Xie Mowen, Jiang Yujing, Jia Beining, Cong Xiaoming. MONITORING AND EARLY WARNING EXPERIMENT OF ROCK COLLAPSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1212-1221. DOI: 10.6052/0459-1879-20-441 |
[6] | Yuanping Huo, Junfeng Wang, Ziwen Zuo, Hailong Liu. ELECTROHYDRODYNAMIC CHARACTERISTICS OF LIQUID BRIDGE FORMATION AT THE DRIPPING MODE OF ELECTROSPRAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 425-431. DOI: 10.6052/0459-1879-18-256 |
[7] | Wang Xinjie, Wu Yanqing, Huang Fenglei. NANOINDENTATION EXPERIMENTS AND SIMULATIONS STUDIES ON MECHANICAL RESPONSES OF ENERGETIC CRYSTALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 95-104. DOI: 10.6052/0459-1879-14-160 |
[8] | Wu Yongqiang, Duan Li, Li Yongqiang, Kang Qi. GROUND EXPERIMENTS OF BOUYANT THERMOCAPILLARY CONVECTION OF LARGE SCALE LIQUID BRIDGE WITH LARGE PRANDTL NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 981-989. DOI: 10.6052/0459-1879-12-148 |
[9] | Zhiwu Zhu, Jianguo Ning, Shuncheng Song. Experimental research and numerical analysis of frozen soil based on endochronic theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 549-554. DOI: 10.6052/0459-1879-2009-4-2008-017 |
[10] | EXPERIMENTAL STUDY ON SOME MECHANICAL PARAMENTERS OF ROCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 507-512. DOI: 10.6052/0459-1879-1991-4-1995-870 |