EI、Scopus 收录
中文核心期刊
Li Weiwei, Yang Qingsheng, Liu Zhiyuan. NANOINDENTATION EXPERIMENT AND FINITE ELEMENT SIMULATION FOR BIOMECHANICAL BEHAVIOR OF RED BLOOD CELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 614-621. DOI: 10.6052/0459-1879-2012-3-20120319
Citation: Li Weiwei, Yang Qingsheng, Liu Zhiyuan. NANOINDENTATION EXPERIMENT AND FINITE ELEMENT SIMULATION FOR BIOMECHANICAL BEHAVIOR OF RED BLOOD CELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 614-621. DOI: 10.6052/0459-1879-2012-3-20120319

NANOINDENTATION EXPERIMENT AND FINITE ELEMENT SIMULATION FOR BIOMECHANICAL BEHAVIOR OF RED BLOOD CELL

Funds: The project was supported by the National Natural Science Foundation of China (10872011, 11172012) and the Natural Science Foundation of Beijing (3092006)
  • Received Date: January 18, 2011
  • Revised Date: July 23, 2011
  • This paper studies the biomechanical behaviors of a red blood cell (RBC) by nanoindentation technique and finite element simulation. The Young's modulus and load-displacement curve of RBC are measured by nanoindentation. Then a 3D finite element model of RBC is built to simulate the naoindentation process. The load-displacement curves of RBC are obtained by altering friction coefficients between the tip and curvature radius of the tip. It is shown that the FEM results are agreement with the experimental data for nanoindentation of RBC. The deformation of RBC is obviously influenced by the curvature radius of the tip but slightly by the friction coefficient between the tip and the cell.
  • Moutzouri AG, Athanassiou GA, Dimitropoulou D, et al. Severe sepsis and diabetes mellitus have additive effects on red blood cell deformability. Journal of Infection, 2008, 57(2): 147-151  
    Nikolsky E, Mehran R, Sadeghi HM, et al. Prognostic impact of blood transfusion after primary angioplasty for acute myocardial infarction: analysis from the CADILLAC trial. JACC: Cardiovascular Interventions, 2009, 2(7): 624-632  
    Bouderbala S, Prost J, Lacaille-Dubois MA, et al. Iridoid extracts from Ajuga iva increase the antioxidant enzyme activities in red blood cells of rats fed a cholesterol-rich diet. Nutrition Research, 2010, 30(5): 358-365  
    Cueff A, Seear R, Dyrda A, et al. Effects of elevated intracellular calcium on the osmotic fragility of human red blood cells. Cell Calcium, 2010, 47(1): 29-36  
    Evans EA. New membrane concept applied to the analysis of fluid shear and micropipette-deformed red blood cells. Biophysical Journal, 1973, 13(9): 941-954  
    Chien S. Red cell membrane elasticity as determined by flow channel technique. Biorheology, 1992, 29(5): 467-478
    Wen ZY, Gao T, Yan ZY, et al. Biophysical meanings of orientation and deformation of RBCs in shear flow field of low viscosity with new Ektacytometry. Science in China, 1998, 41(2): 195-202
    Hochmuth RM, Mohandas N, Blackshear PL. Measurement of the elastic modulus for RED cell membrane using a fluid mechanical technique. Biophsical J, 1973, 13: 747-762  
    阮晓声. 底部附着法中估算红细胞膜弹性模量的两种数学模型及其比较. 生物医学工程学杂志, 2002, 19 (2): 204-206 (Ruan Xiaosheng. Two mathematical models of estimating rbc membrane elastic modulus and a comparison of them by use of bottom attached method. Journal of Biomedical Engineering, 2002, 19 (2): 204-206 (in Chinese))
    Angker L, Swain MV, Kilpatrick N. Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. Journal of Biomechanics, 2005, 38(7): 1535-1542  
    Brauer DS, Saeki K, Hilton JF, et al. Effect of sterilization by gamma radiation on nano-mechanical properties of teeth. Dental Materials, 2008, 24(8): 1137-1140  
    Jingzhou Z, Niebur GL, Ovaert TC. Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. Journal of Biomechanics. 2008, 41(2): 267-275
    Rho JY, Zioupos P, Currey JD, et al. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. Journal of Biomechanics, 2002, 35(2): 189-198  
    Bhushan B, Guohua W. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique. Ultramicroscopy, 2006, 106(8-9): 742-754
    Bouzakis KD, Michailidis N. An accurate and fast approach for determining materials stress-strain curves by nanoindentation and its FEM-based simulation. Materials Characterization, 2006, 56(2): 147-157  
    冯元桢. 生物力学. 北京: 科学出版社, 1983. 43-47 (Fung YC. Biomechanics. Beijing: Science Press, 1983. 43-47 (in Chinese))
    史立秋, 张顺国, 孙涛等. AFM的纳米硬度测试与分析. 光学精密工程, 2007, 15(5): 725-729 (Shi Liqiu, Zhang Shunguo, Sun Tao, et al. Test and analysis on nanohardness using an AFM-based system. Optics and Precision Engineering, 2007, 15(5): 725-729 (in Chinese))
    张泰华, 杨业敏. 纳米硬度技术的发展和应用. 力学进展, 2002, 32(3): 349-364 (Zhang Taihua, Yang Yemin. Developments and applications of nano-hardness techniques. Advances in Mechanics, 2002, 32(3): 349-364 (in Chinese))
    刘扬, 陈定方. 基于纳米压痕技术和有限元仿真的材料力学性能分析. 武汉理工大学学报, 2003, 27(4): 690-693 (Liu Yang, Chen Dingfang. Measurement of material mechanical properties using nanoindentation and finite element simulation. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2003, 27(4): 690-693 (in Chinese))
    李敏, 梁乃刚, 张泰华等. 纳米压痕过程的三维有限元数值试验研究. 力学学报, 2003, 35(3): 257-264 (Li Min, Liang Naigang, Zhang Taihua, et al. 3D finite element simulation of the nanoindentation process. Acta Mechanica Sinica, 2003, 35(3): 257-264 (in Chinese))
  • Related Articles

    [1]Wei Chang, Li Shangming. FINITE ELEMENT-IMMERSED INTERFACE COUPLING METHOD BASED ON STABILIZED L2 PROJECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(6): 1336-1350. DOI: 10.6052/0459-1879-24-554
    [2]Wang Xuelin, Hu Yujin. EVALUATION OF ROUND WINDOW STIMULATION BY A FE MODEL OF HUMAN AUDITORY PERIPHERY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 622-630. DOI: 10.6052/0459-1879-2012-3-20120320
    [3]RESEARCH ON NON OSCILLATION, PARAMETER FREE FINITE ELEMENT SCHEME 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(4): 391-403. DOI: 10.6052/0459-1879-1998-4-1995-142
    [4]FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 575-584. DOI: 10.6052/0459-1879-1996-5-1995-371
    [5]MEAN FUNCTIONS AND MEAN MODIFICATION OF FINITE ELEMENT BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 739-743. DOI: 10.6052/0459-1879-1994-6-1995-603
    [6]THE FINITE ELEMENT ANALYSIS OF PULSATILE FLOW PATTERNS ASSOCIATED WITH AN ARTERIAL STENOSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(3): 320-328. DOI: 10.6052/0459-1879-1992-3-1995-744
    [7]ANTI-PLANE WAVE MOTION IN FINITE ELEMENT MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 207-215. DOI: 10.6052/0459-1879-1992-2-1995-729
    [8]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946

Catalog

    Article Metrics

    Article views (1842) PDF downloads (1001) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return