EI、Scopus 收录
中文核心期刊
Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306
Citation: Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306

HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY

Funds: The project was supported by the National Natural Science Foundation of China (10872204)
  • Received Date: June 06, 2011
  • Revised Date: November 06, 2011
  • Several higher-order accurate, non-oscillatory, three-nodes central difference schemes for the convective-diffusion equation are given by perturbationally reconstructing the diffusion scheme in the second-order accurate central difference scheme(2-CDS). Excellent properties of higher-order accurate and high resolution of the present new schemes (diffusion perturbation schemes, DPS) are verified by theoertical analyses and three numerical tests which include one-dimensional linear and non-linear and two-dimensional convective-diffusion equations. In all numerical tests, the 2-CDS oscillates and diverges on coarse grids, while part of DPS do not oscillates and can capture discontinuities with high resolution. The mean square root L2 errors of all DPS are greatly less than those of 2-CDS in all numerical tests. The DPS are the results of introducing diffusion-motion law(i.e. physical viscosity smoothing out space-distribution of diffusion quantities) into 2-CDS. The present method is obviously different from the well-known those of constructing high-order accurate and high resolution schemes. In addition, we prove that DPS are completely consistent with those schemes of introducing convection-motion law(i.e. law of that the downstream does not affect the upstream) into 2-CDS, to show that the perturbational operation to 2-CDS not only raises the scheme's accurate and stability but also reveals intrinsic relation between the convective discrete scheme and diffusion discrete scheme, and that the upstream-downstream splitting is a very useful method for reconstructing high-order accurate, high resolution CFD scheme without artificial viscosity or limiter.
  • Chung TJ. Computational Fluid Dynamics (2nd edn). Cambridge: Cambridge University Press, 2010  
    Laney CB. Computational Gasdynamics. Cambridge: Cambridge University Press, 1998
    Von Neuman J, Richtmyer RD. A method for numerical calculation of hydrodynamic shock. J Applied Phys, 1950, 21: 232-257  
    Jameson A, Schmidt W. Turkel E. Numerical solutions of Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA 81-1259, 1981
    Godunov SK. A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations. Math Sobrnik, 1959, 47: 271-306
    Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys, 1983, 49: 357-393  
    Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes III. Jour Comput Phys, 1987, 71: 231-303  
    Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200-212  
    高智. 对流扩散方程的高精度差分方法. 见: 北京计算流体力学讨论会文集 (第六辑). 中国科学院力学研究所, 1994, 6: 1-23 (Gao Zhi. Higher-order accuracy difference algorithm for the convective diffusion equation. In: Proc. of Beijing Workshop on computation Fluid Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 1994, 6: 1-23 (in Chinese))
    高智. 对流扩散方程的摄动有限体积方法. 见: 第十一届全国计算流体力学会议论文集, 洛阳, 2002. 38-45 (Gao Zhi. Perturbational finite volume method for the convective diffusion equation. In: Proc. of 11th National Conference for Computation Fluid Dynamics. Luoyang, 2002. 38-45 (in Chinese))
    高智. 数值摄动算法及其CFD格式. 力学进展, 2010, 40(6): 607-633 (Gao Zhi. Numerical perturbation algorithm and its CFD schemes. Advances in Mechanics, 2010, 40(6): 607-633 (in Chinese))
    高智. 对流扩散方程的绝对稳定高阶三结点中心差分格式. 力学学报, 2010, 42(5): 811-817 (Gao Zhi. Two absolute stability, higher order central difference schemes for the convective diffusion equation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 811-817 (in Chinese))
    朱可, 李明军. 对流扩散方程QUICK格式的数值摄动高精度重构格式. 力学学报, 2011, 43(1): 55-62 (Zhu Ke, Li Mingjun. Numerical perturbation higher-order accurate reconstruction of QUICK scheme for the convective diffusion equation. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 55-62 (in Chinese))
    杨满叶, 舒适, 李明军. 对流扩散方程的三阶迎风格式的数值摄动高精度 重构. 水动力学研究与进展, A辑, 2010, 25(3): 307-315 (Yang Manye, Zhu Shi, Li Mingjun. Numerical perturbation higher-order accurate reconstruction of third-order upwind difference scheme for the convective diffusion equation. Jour Hydrodynamics Ser, A, 2010, 25(3): 307-315 (in Chinese))
    Gao Zhi. Numerical perturbation algorithm and two absolute positive higher-order accurate central finite-volume schemes for the convective diffusion equation. In: Proc. of 8th Asian Computational Fluid Dynamics Conference, HongKong. Jan, 2010
  • Related Articles

    [1]Zhao Yong, Ge Yixuan, Chen Xinmeng, Chen Zhenyu, Wang Lei. MULTI-DISTRIBUTION REGULARIZED LATTICE BOLTZMANN METHOD FOR CONVECTION-DIFFUSION-SYSTEM-BASED INCOMPRESSIBLE NAVIER-STOKES EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-14. DOI: 10.6052/0459-1879-25-096
    [2]Topology Optimization with Self-supported Enclosed-voids through Convection-diffusion Equations[J]. Chinese Journal of Theoretical and Applied Mechanics.
    [3]Wan Wei, Qu Ling, Zhou Shengqi. LABORATORY STUDIES ON THE STAIRCASE STRUCTURE OF DOUBLE-DIFFUSIVE CONVECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 217-223. DOI: 10.6052/0459-1879-13-230
    [4]Zhu Ke Li Mingjun. Numerical perturbation higher-order accurate reconstruction of quick scheme for the convective-diffusion equation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 55-62. DOI: 10.6052/0459-1879-2011-1-lxxb2009-759
    [5]Wenhua Wu, Xikui Li. Mixed finite element method for generalized convection-diffusion equations based on implicit characteristic-based algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 473-478. DOI: 10.6052/0459-1879-2007-4-2006-257
    [6]PERTURBATIONAL FINITE VOLUME METHOD FOR CONVECTIVE DIFFUSION EQUATION AND DISCUSSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2002-219
    [7]INVARIANCE OF INTERACTIVE-STRUCTURE BETWEEN CONVECTION AND DIFFUSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 661-670. DOI: 10.6052/0459-1879-1992-6-1995-789
    [8]A TRANSFORMATION OF THE CONVECTIVE DIFFUSION EQUATION WITH CORRESPONDING FINITE DIFFERENCE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 418-425. DOI: 10.6052/0459-1879-1991-4-1995-858
  • Cited by

    Periodical cited type(7)

    1. 杜东海 ,周利霖 ,李道奎 ,陈晨 ,廖一寰 . 热环境下多种材料圆柱壳动特性畸变相似研究. 力学学报. 2025(03): 627-643 . 本站查看
    2. 傅威,李肖成,惠旭龙. 弹塑性梁板结构冲击相似性方法研究. 工程与试验. 2024(01): 14-21 .
    3. 常新哲,徐绯,杨磊峰,王帅,李肖成,惠旭龙,王计真. 薄壁方管轴向压溃的相似性研究. 振动与冲击. 2023(11): 284-294 .
    4. 沈子楷,戴湘晖,王可慧,钱秉文,范如玉,高鹏飞,柯明,周刚. Taylor撞击塑性变形的尺寸效应研究. 振动与冲击. 2023(17): 86-95 .
    5. 杨磊峰,常新哲,徐绯,王帅,刘小川,惠旭龙,李肖成. 受轴向冲击薄壁圆管的几何畸变相似律研究. 爆炸与冲击. 2022(05): 102-113 .
    6. 王悦鑫,何欢,吴添,惠旭龙. 基于损失函数的缩比模型冲击响应预报结果修正方法. 航空学报. 2022(08): 469-480 .
    7. 李肖成,徐绯,杨磊峰,王帅,刘小川,惠旭龙,刘继军. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究. 爆炸与冲击. 2021(11): 70-81 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1789) PDF downloads (802) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return