EI、Scopus 收录
中文核心期刊
Ai Zhiyong, Cao Guojun, Cheng Yichong. ANALYTICAL LAYER-ELEMENT OF PLANE STRAIN BIOT'S CONSOLIDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 401-407. DOI: 10.6052/0459-1879-2012-2-20120224
Citation: Ai Zhiyong, Cao Guojun, Cheng Yichong. ANALYTICAL LAYER-ELEMENT OF PLANE STRAIN BIOT'S CONSOLIDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 401-407. DOI: 10.6052/0459-1879-2012-2-20120224

ANALYTICAL LAYER-ELEMENT OF PLANE STRAIN BIOT'S CONSOLIDATION

Funds: The project was supported by the National Natural Science Foundation of China (50578121).
  • Received Date: November 23, 2010
  • Revised Date: June 16, 2011
  • An efficient algorithm is presented to solve plane strain Biot's consolidation of a single soil layer with an arbitrary depth. Starting from the governing equations of Biot's consolidation, an exactly symmetric stiffness matrix, i.e. the analytical layer-element, is deduced in Laplace-Fourier transformed domain by using the eigenvalue approach. According to the relationship between generalized displacements and stresses of a single layer in the transformed domain described by the matrix, and the boundary conditions of the soil layer, the solutions of any point can be obtained. The actual solutions in the physical domain can further be acquired by inverting the Laplace-Fourier transform. Finally, numerical examples are presented to verify the theory and study the influence of the soil properties and time history on the consolidation behavior.
  • 1 Terzaghi K. Erdbaumechanik auf Bodenphysikalischer Grundlage. Leipzig:Franz Deuticke, 1925   
    2 Biot MA. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12(2): 155-164   
    3 Biot MA. General solution of the equations of elasticity and consolidation for a porous material. J Appl Mech, 1956, 23(3): 91-95
    4 McNamee J, Gibson RE. Displacement functions and linear transforms applied to diffusion through porous elastic media. Q J Mech Appl Math, 1960, 13(1): 98-111   
    5 McNamee J, Gibson RE. Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Q J Mech Appl Math, 1960, 13(2): 210-227   
    6 Vardoulakis I, Harnpattanapanich T. Numerical Laplace-Fourier transform inversion technique for layered-soil consolidation problems ——I: Fumdamental solutions and validation. Int J Num Anal Meth Geomech, 1986, 10(4): 347-365   
    7 Senjuntichai T, Rajapakse RKND. Exact stiffness method for quasi-statics of a multi-layered poroelastic medium. Int J Solids Struct, 1995, 32(11): 1535-1553   
    8 Bahar LY. Transfer matrix approach to layered systems. J Eng Mech Div ASCE, 1972, 98(5): 1159-1172
    9 Wang JG, Fang SS. The state vector solution of axisymmetric Biot's consolidation problems for multilayered poroelastic media. Mech Res Com, 2001, 28(6): 671-677   
    10 Wang JG, Fang SS. State space solution of non-axisymmetric Biot's consolidation problems for multilayered poroelastic media. Int J Eng Sci, 2003, 41(15): 1799-1813   
    11 Ai ZY, Chen ZY, Han J. State space solution to three-dimensional consolidation of multi-layered soils. Int J Eng Sci, 2008, 46(5): 486-498   
    12 Ai ZY, Wang QS, Han J. Transfer matrix solutions to axisymmetric and non-axisymmetric consolidation of multilayered soils. Acta Mechanica, 2010, 211(2): 155-172   
    13 Booker JR, Small JC. Finite layer analysis of consolidation I. Int J Num Anal Meth Geomech, 1982, 6(2): 151-171   
    14 Booker JR, Small JC. Finite layer analysis of consolidation II. Int J Num Anal Meth Geomech, 1982, 6(2): 173-194   
    15 Booker JR, Small JC. A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace Transforms. Int J Num Anal Meth Geomech, 1987, 11(4): 363-380   
    16 Christian JT, Boehmer JW. Plane strain consolidation by finite elements. J Soil Mech Found Div, 1970, 96(4): 1435-1457
    17 Cheng AHD, Liggett JA. Boundary integral equation method for linear porous-elasticity with applications to soil consolidation. Int J Numer Meth Eng, 1984, 20(2): 255-278   
    18 Sneddon IN. The Use of Integral Transform. New York: McGraw-Hill, 1972
  • Related Articles

    [1]Kuncao Bai, Dongxing Cao, Gang Wang, Tiangang Lei. A BRIEF INTRODUCTION OF COMPLETED KEY PROGRAM PROJECTS ON MECHANICS IN 2018[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 965-969. DOI: 10.6052/0459-1879-19-097
    [2]Lan Peng, Cui Yaqi, Yu Zuqing. THE COMPLETED FORM OF ELASTIC MODEL FOR ANCF THIN PLATE ELEMENT AND ITS APPLICATION ON DYNAMIC MODELING OF THE LEAF SPRING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1156-1167. DOI: 10.6052/0459-1879-18-133
    [3]Zhang Panfeng, Zhan Shige, Wang Lifeng, Xu Xianghong. A BRIEF INTRODUCTION OF COMPLETED KEY PROGRAM PROJECTS ON MECHANICS IN 2013[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 642-646. DOI: 10.6052/0459-1879-14-193
    [4]Zhang Panfeng, Zhan Shige, Wang Lifeng, Xu Xianghong. A BRIEF INTRODUCTION OF COMPLETED KEY PROGRAM PROJECTS ON MECHANICS IN 2012[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 634-638. DOI: 10.6052/0459-1879-13-216
    [7]NUMERICAL SOLUTION OF THE EULER EQUATIONS FOR THE TRANSONIC FLOW ABOUT THE COMPLETE AIRCRAFT AT HIGH ANGLES OF ATTACKE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 730-735. DOI: 10.6052/0459-1879-1996-6-1995-393
    [8]COMPLETENESS AND NONUNIQUENESS OF GENERAL SOLUTIONS OF ELASTIC SHALLOW SHELLS WITH CONSTANT CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 532-541. DOI: 10.6052/0459-1879-1996-5-1995-366
    [9]FREE VIBRATIONS OF ATHIN COMPLETE SPHERICAL SHELL SUBMERGED IN A COMPRESSIBLE FLUID MEDIUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 385-397. DOI: 10.6052/0459-1879-1995-4-1995-446
    [10]CONSERVATION LAWS AND COMPLETENESS THEOREMS FOR LINEAR ELASTIC MATERIALS WITH VOIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(4): 490-494. DOI: 10.6052/0459-1879-1990-4-1995-975

Catalog

    Article Metrics

    Article views (1580) PDF downloads (878) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return