EI、Scopus 收录
中文核心期刊
Tang Ke, Zhang Yu, Tang Wentao, Jin Tao, Zhang Xuejun. ANALYSIS OF VELOCITY ANNULAR EFFECT OF OSCILLATORY FLOW INSIDE PARALLEL PLATE CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 252-258. DOI: 10.6052/0459-1879-2012-2-20120208
Citation: Tang Ke, Zhang Yu, Tang Wentao, Jin Tao, Zhang Xuejun. ANALYSIS OF VELOCITY ANNULAR EFFECT OF OSCILLATORY FLOW INSIDE PARALLEL PLATE CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 252-258. DOI: 10.6052/0459-1879-2012-2-20120208

ANALYSIS OF VELOCITY ANNULAR EFFECT OF OSCILLATORY FLOW INSIDE PARALLEL PLATE CHANNEL

Funds: The project was supported by the National Natural Science Foundation of China (50890182).
  • Received Date: May 25, 2011
  • Revised Date: September 10, 2011
  • This study focuses on the velocity-annular-effect (VAE) of compressible oscillatory flow inside parallel plate channel. By analyzing the mechanism of VAE, we conclude that VAE, which inevitably occurs in viscous oscillatory pipe flow, is most visible at the phase when the centerline velocity reaches zero. In order to quantitatively evaluate the VAE, coefficient of velocity annular effect (CVAE) was proposed as an index parameter, based on the slope of velocity profile when the centerline velocity reaches zero. Numerical computations with the index parameter CVAE were conducted to analyze the impacts of dimensionless parameters, i.e., Valensi number Va and maximum Reynolds number Remax, on the VAE of oscillatory flow inside parallel plate channel.
  • 1 Richardson EG, Tyler E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established. it Proceedings of the Physical Society, 1929, 42(1): 1-15
    2 Sexl VT. Über den von E.G.Richardson entdeckten annulareffekt. it Zeitschrift für Physik A Hadrons and Nuclei, 1930, 61(5-6): 349-362   
    3 Zhao TS, Cheng P. Heat transfer in oscillatory flows. it Annual Review of Heat Transfer, 1998, 9: 359-420
    4 Uchida S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. it Zeitschrift für angewandte Mathematik und Physik, 1956, 7(5): 403-422   
    5 Wang Y, He YL, Tang GH, Tao WQ. Simulation of two-dimensional oscillating flow using the lattice Boltzmann method. it International Journal of Modern Physics C, 2006, 17(5): 615-630   
    6 Shi L, Yu ZB, Jaworski AJ. Application of laser-based instrumentation for measurement of time-resolved temperature and velocity fields in the thermoacoustic system. it International Journal of Thermal Sciences, 2010,49(9): 1688-1701   
    7 Sert C, Beskok A. Numerical simulation of reciprocating flow forced convection in two-dimensional channels. it Journal of Heat Transfer, 2003,125(3): 403-412   
    8 Jaworski AJ, Mao XA, Mao XR, et al. Entrance effects in the channels of the parallel plate stack in oscillatory flow conditions. it Experimental Thermal and Fluid Science, 2009, 33(3): 495-502   
    9 Tang K, Zhang Y, Lin XG, et al. Hydrodynamic and thermal development of compressible oscillatory flow inside circular channel. it Cryogenics, 2011,51(3): 139-145   
    10 林建忠, 阮晓东, 陈邦国等. 流体力学. 北京: 清华大学出版社, 2005: 76-103 (Lin Jianzhong, Ruan Xiaodong, Chen Bangguo, et al. Fluid Mechanics. Beijing: Tsinghua University Press, 2005: 76-103 (in Chinese))
    11 Hino M, Sawamoto M, Takasu S. Experiments on transition to turbulence in an oscillatory pipe flow. it Journal of Fluid Mechanics. 1976, 75(2):193-207
    12 Bai YH, Li JC, Zhou JF. Effects of physical parameter range on dimensionless variable sensitivity in water flooding reservoirs. it Acta Mechanica Sinica, 2006, 22(5): 385-391  
  • Related Articles

    [1]Li Qi, Wang Zhaoyu, Hu Pengfei. FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS IN THE MULTILAYERED-PARALLEL FRACTURED POROUS CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2994-3009. DOI: 10.6052/0459-1879-22-285
    [2]Wang Shiping, Sun Shili, Zhang Aman, Chen Yu. NUMERICAL SIMULATION OF BUBBLE DYNAMICS IN COMPRESSIBLE FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 513-519. DOI: 10.6052/0459-1879-2012-3-20120307
    [3]T. Hayat, F. Shahzad, M. Ayub. Stokes' first problem for the fourth order fluid in a porous half[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 17-21. DOI: 10.6052/0459-1879-2007-1-2006-138
    [4]Rayleigh-taylor and kelvin-helmholtz instability of compressible fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 655-663. DOI: 10.6052/0459-1879-2004-6-2003-501
    [5]Numerical simulation for the flow front of viscous incompressible fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(5): 583-588. DOI: 10.6052/0459-1879-2004-5-2001-417
    [6]ON THE DISPUTE WITH REGARD TO VISCOUS LINEAR STABILITY OF COMPRESSIBLE BOUNDARY LAYER FLOW OVER FLAT PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 24-29. DOI: 10.6052/0459-1879-1997-1-1995-192
    [7]FREE VIBRATIONS OF ATHIN COMPLETE SPHERICAL SHELL SUBMERGED IN A COMPRESSIBLE FLUID MEDIUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 385-397. DOI: 10.6052/0459-1879-1995-4-1995-446
    [8]WELL TEST ANALYSIS OF HIGH COMPRESSIBLE FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(3): 292-302. DOI: 10.6052/0459-1879-1992-3-1995-741

Catalog

    Article Metrics

    Article views (1766) PDF downloads (7992) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return