EI、Scopus 收录
中文核心期刊
Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532
Citation: Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532

Multi-objective optimization for sheet metal formnig of drawing with successive response surface method

  • Received Date: November 04, 2007
  • Revised Date: January 30, 2008
  • This paper describes a multi-objective optimization ofdrawbead geometrical parameters of automotive panel using successiveresponse surface method. The existing response surface method has a lowprecision in the entire design space, and conventional single-objectiveoptimization design does not provide for multi-objective conditions and hasbeen used to optimize only a single objective. The present method updatesthe region of interest (ROI) in the design space by panning and zooming. Ineach ROI, a set of pareto optimal solutions of equivalent drawbead restraintforce,are obtained to minimize the defects of crack and wrinkle by combiningdesign of experiments, successive response surface method andmulti-objective particle swarm optimization. Through the minimum distancemethod, a solution with best forming approach is obtained from the paretooptimal solutions, and it is used as the center point of the next region ofinterest. The optimal drawbead restraint force will be obtained by theiterative procedure. The optimal design geometric parameters of drawbead canbe obtained using the optimal drawbead restraint force and geneticalgorithm. These optimal parameters can be efficiently used to improve theforming properties of sheet. Numerical examples indicate that the presentmethod has higher precision and practicability compared with the existingtechniques.
  • Related Articles

    [1]Wei Xizhong, Wang Yongshuai, Chen Yihong, Ji Bin. PREDICTION METHOD OF PROPELLER TIP VORTEX CAVITATION INCEPTION BASED ON TREND MUTATION TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 605-615. DOI: 10.6052/0459-1879-24-448
    [2]Wang Yongshuai, Wang Xincheng, Cheng Huaiyu, Ji Bin. NUMERICAL SIMULATION OF PROPELLER TIP VORTEX CAVITATION INCEPTION CONSIDERING THE EFFECT OF NUCLEI GROWTH AND COLLAPSE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1417-1427. DOI: 10.6052/0459-1879-23-080
    [3]Tian Beichen, Li Linmin, Chen Jie, Huang Biao, Cao Junwei. NUMERICAL STUDY OF MULTISCALE CAVITATING FLOW AROUND A HYDROFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1557-1571. DOI: 10.6052/0459-1879-22-022
    [4]Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215
    [5]Gao Yuan, Huang Biao, Wu Qin, Wang Guoyu. EXPERIMENTAL INVESTIGATION OF THE VIBRATION CHARACTERISTICS OF HYDROFOIL IN CAVITATING FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016. DOI: 10.6052/0459-1879-15-173
    [6]Guo Ce, Zhu Xijing, Wang Jianqing, Cheng Quan, Liu Guodong. DYNAMICAL BEHAVIORS OF DOUBLE CAVITATION BUBBLES UNDER ULTRASONIC HONING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 879-886. DOI: 10.6052/0459-1879-14-108
    [7]Zhao Yu, Wang Guoyu, Huang Biao, Hu Changli, Chen Guanghao, Wu Qin. STUDY OF TURBULENT VORTEX AND HYDRAULIC DYNAMICS IN TRANSIENT SHEET/CLOUD CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 191-200. DOI: 10.6052/0459-1879-13-177
    [8]Shi Suguo, Wang Guoyu. A MODIFIED KUBOTA CAVITATION MODEL FOR COMPUTATIONS OF CRYOGENIC CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 269-277. DOI: 10.6052/0459-1879-2012-2-20120210
    [9]Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329
    [10]Experimental observations of inception cavitation vortices around a hydrofoils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 547-552. DOI: 10.6052/0459-1879-2006-4-2005-020
  • Cited by

    Periodical cited type(12)

    1. 陈俊宝,李伟,胡敬宁,季磊磊. WA-DES湍流模型在喷水推进泵数值预测中的适用性研究. 中南大学学报(自然科学版). 2025(02): 756-770 .
    2. 韦喜忠,王永帅,陈奕宏,季斌. 基于趋势突变检验的螺旋桨梢涡空化初生预报方法. 力学学报. 2025(03): 605-615 . 本站查看
    3. 屈念冲,许开富,项乐,林荣浩,党枭睿. 基于Omega涡识别理论的自适应空化流动模型. 推进技术. 2024(02): 78-90 .
    4. 张雨佳,刘秀梅,李贝贝,刘申. 基于空化时空分布特征的调节阀空蚀风险预测. 华中科技大学学报(自然科学版). 2024(06): 71-79 .
    5. 项乐,许开富,陈晖,谭永华,李雨濛,林荣浩. 宽工作范围诱导轮空化不稳定及抑制. 力学学报. 2024(08): 2327-2337 . 本站查看
    6. 王连安,徐艳,王尊策,李森,张井龙,刘海水. 风琴管喷嘴空化水射流流场的大涡模拟. 机械科学与技术. 2024(09): 1514-1521 .
    7. 闫思娜,罗兴锜,冯建军,谢航,孙帅辉,朱国俊. 混流式气液两相泵叶顶泄漏涡动力学特性. 水力发电学报. 2024(12): 116-124 .
    8. 马良,李鹏,任万龙,王苗苗,赵鑫. 空腔结构对文丘里管的流场特性影响. 工程与试验. 2023(02): 27-29+42 .
    9. 吴广宽,王浩洋,罗兴锜,冯建军,闫思娜. C型槽参数对NACA0009翼型间隙流动的影响. 水动力学研究与进展A辑. 2022(01): 93-100 .
    10. 陈家成,陈泰然,梁文栋,谭树林,耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报. 2022(05): 1242-1256 . 本站查看
    11. 田北晨,李林敏,陈杰,黄彪,曹军伟. 绕水翼空化流动多尺度数值研究. 力学学报. 2022(06): 1557-1571 . 本站查看
    12. 陈家成,陈泰然,韩磊,耿昊,谭树林. 自由场中液氮单空泡动力学特性的实验研究. 力学学报. 2022(09): 2387-2400 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1745) PDF downloads (883) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return