EI、Scopus 收录
中文核心期刊
Bo Wang, Xiong Zhang, Shengli Xu. Mechanical behavior of 2d periodic honeycombs under in-plane uniaxial compression[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274-281. DOI: 10.6052/0459-1879-2009-2-2007-400
Citation: Bo Wang, Xiong Zhang, Shengli Xu. Mechanical behavior of 2d periodic honeycombs under in-plane uniaxial compression[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274-281. DOI: 10.6052/0459-1879-2009-2-2007-400

Mechanical behavior of 2d periodic honeycombs under in-plane uniaxial compression

  • Received Date: August 28, 2007
  • Revised Date: January 03, 2008
  • In the present study, polyvinylchloride (PVC) andpolypropylene (PP) ``based honeycomb structures with different inner celltopologies, such as Kagome, Triangle and Diamond, are fabricated with the``Strip slotting- Assembling-Welding'' technique. The quasi-static crushbehaviors under in-plane compression are experimentally investigated forKagome, Triangle and Diamond cell structures. The Charge Couple Devices(CCD) camera and digital image correlation (DIC) method are applied toobtain the the whole strain-field of the structures. Experimental resultssuggest that the energy absorption performance of Kagome structure issuperior to others with the same materials volume and structural sizes. Inaddition, a special rotation deformation mechanism of Kagome honeycombstructures is addressed. Moreover, numerical analyses of Kagome and Trianglecells under low velocity impact are studied in comparison with the resultsfrom the known Hexagonal cells. The numerical results show that the Kagomecells with the rotation deformation behavior have better energy absorptionperformance than triangle and hexagonal cells. Both experimental andnumerical results indicate great sensitivity of the local honeycombmorphology to deformation and energy absorption.
  • Related Articles

    [1]Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. DOI: 10.6052/0459-1879-20-333
    [2]Chen Haihua, Zhang Xianfeng, Xiong Wei, Liu Chuang, Wei Haiyang, Wang Haiying, Dai Lanhong. DYNAMIC MECHANICAL BEHAVIOR AND PENETRATION PERFORMANCE OF WFeNiMo HIGH-ENTROPY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. DOI: 10.6052/0459-1879-20-166
    [3]Li Jianguo, Huang Ruirui, Zhang Qian, Li Xiaoyan. MECHNICAL PROPERTIES AND BEHAVIORS OF HIGH ENTROPY ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359. DOI: 10.6052/0459-1879-20-009
    [4]Zhang Juan, Kang Guozheng, Rao Wei. REVIEW ON THE DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATIONS OF METALLIC GLASS MATRIX COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 318-332. DOI: 10.6052/0459-1879-20-038
    [5]Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
    [6]Hua Jun, Hou Yan, Duan Zhirong, He Yu. STUDY ON IRRADIATION DAMAGE AND MECHANICAL PROPERTY OF GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1080-1087. DOI: 10.6052/0459-1879-16-015
    [7]Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113
    [8]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [9]Hongliang Dai, Yiming Fu, J.H. Yang. Electromagnetoelastic behaviors of functionally graded piezoelectric[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 55-63. DOI: 10.6052/0459-1879-2007-1-2006-127
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655

Catalog

    Article Metrics

    Article views (2334) PDF downloads (1020) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return