Processing math: 100%
EI、Scopus 收录
中文核心期刊
Hongzhang Cao, Shi Liu, Fan Jiang, Jing Liu. The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 848-857. DOI: 10.6052/0459-1879-2007-6-2006-430
Citation: Hongzhang Cao, Shi Liu, Fan Jiang, Jing Liu. The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 848-857. DOI: 10.6052/0459-1879-2007-6-2006-430

The theoretical exploration of frost heave for saturated granular soil--numerical simulation of 1-D ice segregating model based on equilibrium of force and phase

  • Received Date: September 10, 2006
  • Revised Date: September 20, 2007
  • Based on the theory in the rigid ice model, a new 1-D numerical icesegregating model is developed for freezing process in saturated, granularsoil. In this model according as O'Nell {\&} Miller' proposition, liquidwater is attracted toward the soil grain's surface and the attractive forceis greater for liquid than for air or ice. The strength of this attractiondecays with distance from the surface. A grain immersed in water issurrounded by a ``hydrostatic pressure field'' caused by this attraction.The water in the effective range of the ``hydrostatic pressure field''called adsorbed film. The water pressure in adsorbed film is equal to thepressure caused by surface adsorption plus the porous water pressure outsidethe film. In unfrozen soil, grains contact to each other through theadsorbed film. The pressure at the middle line of the adsorbed water film isequal to the contact stress between grains. In the saturated soil freezingprocess, the porous water outside the adsorbed film first freeze, then theice-water interface gradually enter into the film with the temperature drop.The adsorbed film between grains will be frozen while the temperature isless than the phase changing temperature corresponding to the grains contactstress. According to the states of porous water and the water film betweengrains, the freezing soil could be divided into frozen section, phasechanging section that called frozen fringe and unfrozen section. The watertransferring is ignored in frozen section and the phase-exchange not occursin unfrozen section. The ice segregating process could be considered as aquasi-steady process because that the temperature change slowly, then theassumption that phase and force are local equilibrium could be introduced.The governing equations are deduced from conservation of mass and energy andthe relation of porosity and effective stress is considered as approximatelinear. The relation of (I/\partialuw)T and (I/T)uw is deduced based onClapeyron equation then (I/T)uw could takeplace of (I/T)uw in numerical simulation. Therelation of temperature T and the porouswater pressure uw in the express I(T,uw) is deducedby similar method. When the water film between soil granules begins tofreeze to separate soil skeleton, ice segregating process initiated. Thatmeans the criterion of new segregated ice initiation is that the maximumwater pressure at ice-water interface in the frozen fringe become equal orgreater than the total load. In the ice segregating process, the porouswater pressure at the warm side of the warmest segregated ice drop with thetemperature lower. Thus cause that the moisture in the frozen fringe andunfrozen section transfer to the warm side of the segregated ice.1-D freezing process was simulated with similar condition to theexperiment (Xu et al., 1995). The calculated result showed the ice layers. Thetrend of heave change and the distribution of ice layers are similar to theexperiment phenomena.
  • Cited by

    Periodical cited type(24)

    1. 陈淼,唐国元. 水下机械臂快速终端滑模轨迹跟踪控制方法及仿真研究. 机械工程师. 2024(10): 113-116+121 .
    2. 原劲鹏,葛连正,李德伦. 双臂空间机器人闭链系统的协同柔顺控制策略研究. 空间控制技术与应用. 2023(02): 42-50 .
    3. 朱安,陈力. 空间机械臂面向太阳能帆板在轨清洁任务的擦抹力/位阻抗控制. 力学学报. 2023(11): 2624-2635 . 本站查看
    4. 朱安,陈力. 空间机器人在轨双臂辅助航天器对接力/位置嵌套双层滑模阻抗控制. 光学精密工程. 2023(22): 3266-3278 .
    5. 张智豪,于潇雁. 存在关节死区的空间机器人无扰快速终端滑模控制. 力学学报. 2022(03): 777-785 . 本站查看
    6. 王启生,蒋建平,李庆军,江国期,周铃松. 机器人组装超大型结构的姿-轨-柔耦合动力学仿真. 上海航天(中英文). 2022(02): 32-38+44 .
    7. 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制. 浙江大学学报(工学版). 2022(06): 1168-1174 .
    8. 王启生,蒋建平,李庆军,江国期,邓子辰. 空间机器人组装超大型结构的动力学分析. 应用数学和力学. 2022(08): 835-845 .
    9. 朱安,陈力. 基于有限时间收敛的双臂空间机器人捕获卫星主动对接力/位姿阻抗控制. 力学学报. 2022(10): 2861-2873 . 本站查看
    10. 王明明,罗建军,余敏. 基于Clamped B样条的空间非合作目标抓捕策略研究. 力学学报. 2021(02): 524-538 . 本站查看
    11. 夏鹏程,罗建军,王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制. 力学学报. 2021(04): 1138-1155 . 本站查看
    12. 华洪良,廖振强,陈勇将,徐诚. 面向夹持机构的紧凑型串联弹性力控驱动器设计与试验. 农业机械学报. 2021(12): 426-432+442 .
    13. 付晓东,陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报. 2020(01): 171-183 . 本站查看
    14. 王恩美,邬树楠,吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报. 2020(03): 805-816 . 本站查看
    15. 王震,祝恒佳,陈晓宇,张云清. 基于交叉型双气室空气互联悬架的全地形车侧倾特性研究. 力学学报. 2020(04): 996-1006 . 本站查看
    16. 余敏,罗建军,王明明,高登巍. 一种改进RRT~*结合四次样条的协调路径规划方法. 力学学报. 2020(04): 1024-1034 . 本站查看
    17. 张玉玲,谷勇霞,赵杰亮,阎绍泽. 机械臂臂杆刚度主动控制下的末端振动特性研究. 力学学报. 2020(04): 985-995 . 本站查看
    18. 姚文莉,刘彦平,杨流松. 基于高斯原理的非理想系统动力学建模. 力学学报. 2020(04): 945-953 . 本站查看
    19. 艾海平,陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报. 2020(04): 975-984 . 本站查看
    20. 李海泉,梁建勋,吴爽,刘茜,张文明. 空间机械臂柔性捕获机构建模与实验研究. 力学学报. 2020(05): 1465-1474 . 本站查看
    21. 张奇志,张瑞,周亚丽. 单足机器人周期跳跃控制的虚拟约束方法. 力学季刊. 2020(03): 430-440 .
    22. 许丹丹,张进. 基于改进人工势函数的航天器近距离安全控制方法. 力学学报. 2020(06): 1581-1589 . 本站查看
    23. 胡远东,陆正亮,廖文和. 低轨纳卫星质量矩姿态控制技术研究. 力学学报. 2020(06): 1599-1609 . 本站查看
    24. 沈涛,张崇峰,王卫军,冯文博,邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究. 力学学报. 2020(06): 1590-1598 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1982) PDF downloads (778) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return