EI、Scopus 收录
中文核心期刊
Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113
Citation: Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113

Nonlinear formulation for flexible multibody system with large deformation

  • Received Date: March 12, 2006
  • Revised Date: May 09, 2006
  • In this paper, nonlinear modeling for flexible multibody system with large deformation is investigated. Absolute nodal coordinates are employed to describe the displacement, and variational motion equations of a flexible body are derived on the basis of geometric nonlinear theory, in which both the shear strain and the transverse normal strain are taken into account. By separating the inner and the boundary nodal coordinates, the motion equations of a flexible multibody system are assembled. The advantage of such formulation is that the constraint equations and the forward recursive equations become linear because the absolute nodal coordinates are used. A spatial double pendulum connected to the ground with a spherical joint is simulated to investigate the dynamic performance of flexible beams with large deformation. Finally, the resultant constant total energy validates the present formulation.
  • Related Articles

    [1]Peng Xirong, Sui Yunkang, Zheng Yonggang. ICM METHOD WITH A MAPPING BASED ON NODE-UNCOUPLED TOPOLOGY VARIABLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2468-2481. DOI: 10.6052/0459-1879-24-066
    [2]Li Shuai, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION METHOD FOR INTEGRATED THERMAL PROTECTION STRUCTURE CONSIDERING TRANSIENT TEMPERATURE AND STRESS CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1288-1307. DOI: 10.6052/0459-1879-22-598
    [3]Kai Long, Xuan Wang, Liang Ji. INDEPENDENT CONTINUOUS MAPPING METHOD FOR STRESS CONSTRAINT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 620-629. DOI: 10.6052/0459-1879-18-169
    [4]Peng Xirong, Sui Yunkang. ICM METHOD FOR FAIL-SAFE TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621. DOI: 10.6052/0459-1879-17-366
    [5]Ye Hongling, Shen Jingxian, Sui Yunkang. DYNAMIC TOLOGICAL OPTIMAL DESIGN OF THREE-DIMENSIONAL CONTINUUM STRUCTURES WITH FREQUENCIES CONSTRAINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037-1045. DOI: 10.6052/0459-1879-12-069
    [6]Sui Yunkang Xuan Donghai Shang Zhen. ICM method with high accuracy approximation for topology optimization of continuum structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 716-725. DOI: 10.6052/0459-1879-2011-4-lxxb2010-503
    [7]Jianhua Rong, Qiang Zhang, Sen Ge, Rangke Mu. A new structural topological optimization method based on design space adjustments[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 256-267. DOI: 10.6052/0459-1879-2010-2-2008-766
    [8]Jianhua Rong, Xiaojuan Xing, Guo Deng. A structural topological optimization method with variable displacement constraint limits[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 431-439. DOI: 10.6052/0459-1879-2009-3-2007-418
    [9]Yunkang Sui, Hongling Ye, Xirong Peng, Xuesheng Zhang. The ICM method for continuum structural topology optimization with condensation of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 554-563. DOI: 10.6052/0459-1879-2007-4-2006-043
    [10]The improvement for the ICM method of structural topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(2): 190-198. DOI: 10.6052/0459-1879-2005-2-2004-286

Catalog

    Article Metrics

    Article views (1659) PDF downloads (1000) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return