Processing math: 100%
EI、Scopus 收录
中文核心期刊
The joint probability density function of nonlinear dynamic stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 8-8. DOI: 10.6052/0459-1879-2006-5-2005-430
Citation: The joint probability density function of nonlinear dynamic stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 8-8. DOI: 10.6052/0459-1879-2006-5-2005-430

The joint probability density function of nonlinear dynamic stochastic response of structures

  • In nonlinear dynamic response analysis and reliability evaluation of structures, it is of paramount importance to capture the joint probability density function of different response quantities. In the present paper, under the basic thoughts of density evolution, the generalized density evolution equation is extended to derive a two-dimensional partial differential equation governing the joint probability density function. The numerical algorithm is outlined combining the deterministic dynamic response analysis and the finite difference method. Numerical example is conducted to analyze a ten-story frame structure with stochastic parameters subjected to random ground motions. The investigations show that the joint probability density function is irregular like hilly country, while the coefficient of covariance is time variant.Keywords: nonlinear, dynamic response, probability density evolution method, joint probability density function, coefficient of covariance
  • Related Articles

    [1]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [2]Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. DOI: 10.6052/0459-1879-13-174
    [3]Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 127-133. DOI: 10.6052/0459-1879-2006-1-2005-054
    [4]研究了雷诺数Re=200, 1000, 线速度比α=0.5,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021
    [5]The probability density evolution method for dynamic reliability assessment of nonlinear stochastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-202
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]THE PROBABILITY DENSITY FUNCTIONS OF THE STATIONARY RESPONSE OF CERTAIN CLASSES OF NONLINEAR SYSTEMS TO STOCHASTIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 92-102. DOI: 10.6052/0459-1879-1991-1-1995-813
  • Cited by

    Periodical cited type(12)

    1. 王翠艳,石少轩,王明昊,陈恩利,曲兴业. 含黏弹性阻尼的架桥机制动系统非线性动力学特性分析. 江苏大学学报(自然科学版). 2025(02): 221-230 .
    2. 唐建花,李向红,王敏,申永军,李壮壮. 广义分数阶van der Pol-Duffing振子的动力学响应与隔振效果研究. 振动与冲击. 2022(01): 10-18 .
    3. 陈恩利,王明昊,王美琪,常宇健. 含有分数阶阻尼的SD振子系统非线性动力学响应特征研究. 振动工程学报. 2022(05): 1068-1075 .
    4. 秦浩,温少芳,申永军,邢海军,王军. 基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究. 振动与冲击. 2021(06): 33-40+134 .
    5. 薛程,夏兆旺,卢志伟,鞠福瑜,茅凯杰. 分数阶半主动颗粒阻尼隔振系统动力学特性分析. 振动与冲击. 2021(21): 194-200 .
    6. 郭建斌,申永军,李航. 分数阶拟周期Mathieu方程的动力学分析. 力学学报. 2021(12): 3366-3375 . 本站查看
    7. 李航,申永军,李向红,韩彦军,彭孟菲. Duffing系统的主-亚谐联合共振. 力学学报. 2020(02): 514-521 . 本站查看
    8. 武薇,申永军,杨绍普. 基于排列熵理论的非线性系统特征提取研究. 振动与冲击. 2020(07): 67-73 .
    9. 薛程,卢志伟,苏战发,许祥曦,夏兆旺. 分数阶双层隔振系统动力学特性分析. 船舶力学. 2020(11): 1487-1494 .
    10. 赵珧冰,林恒辉,黄超辉,陈林聪. 温度场中悬索受多频激励组合联合共振响应研究. 振动与冲击. 2019(03): 207-213 .
    11. 姜源,申永军,温少芳. 分数阶van der Pol振子的超谐与亚谐联合共振. 振动工程学报. 2019(05): 863-873 .
    12. 黄超辉,赵珧冰. 多频激励下悬索非线性共振特性受温度影响分析. 应用力学学报. 2019(06): 1435-1441+1526 .

    Other cited types(22)

Catalog

    Article Metrics

    Article views (1881) PDF downloads (751) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return