EI、Scopus 收录
中文核心期刊
Stress optimization for truss-like materials based on micropolar continuum representation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 356-363. DOI: 10.6052/0459-1879-2006-3-2005-518
Citation: Stress optimization for truss-like materials based on micropolar continuum representation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 356-363. DOI: 10.6052/0459-1879-2006-3-2005-518

Stress optimization for truss-like materials based on micropolar continuum representation

  • In this paper, the optimum stress distribution around a holeis investigated for LCMs materials with micropolar continuum representationto reduce the computational cost. Two classes of design variables, relativedensity and cell size distribution of the truss-like materials, are to bedetermined by optimization under the given total material volume constraint.The concurrent designs of materials and structures are obtained for threedifferent optimization formulations. In the first formulation, oneminimizes the stress around the hole; in the second formulation, oneminimizes the highest stress within the whole structure. Since the yieldstrength of truss-like materials depends on the relative materialdensity, we minimize the ratio of stress over the corresponding effectiveyield strength along the hole boundary in our third formulation, whichmaximizes the strength reserve, which seems more rational. Numerical resultsfor the three objectives validate the method proposed in this paper. Theinfluence of the ply angle (angle between the principle direction of materialand the axes of system's coordinate) on the optimum result is discussed.The dependence of the optimum design on finite element meshes is alsoinvestigated.
  • Related Articles

    [1]Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060
    [2]Du Jianming Guo Xu. Fail-safe optimal design of truss structures based on robust optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 725-730. DOI: 10.6052/0459-1879-2011-4-lxxb2010-460
    [3]Qingsheng Yang, Lianhua Ma, Baosheng Liu. A continuum theory and numerical procedure for chemo-mechanical coupling behavior[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 422-431. DOI: 10.6052/0459-1879-2010-3-2008-616
    [4]Effective continuum model of grid material based on couple-stress theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 776-785. DOI: 10.6052/0459-1879-2008-6-2007-379
    [5]Hongwu Zhang. Topology optimization of continuum structures with materials exhibiting different tensile and compressive properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 646-653. DOI: 10.6052/0459-1879-2008-5-2007-455
    [6]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [7]Lin Liu, Jun Yan, Gengdong Cheng. Elasto-plastic analysis for 2d structures with truss-like materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 54-62. DOI: 10.6052/0459-1879-2007-1-2005-407
    [8]Topological optimization of continuum structure under the strategy of globalization of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 364-370. DOI: 10.6052/0459-1879-2006-3-2005-071
    [9]TOPOLOGY OPTIMIZATION OF TRUSS STRUCTURES BASED ON RELIABILITY 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 277-284. DOI: 10.6052/0459-1879-1998-3-1995-127
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(12)

    1. 刘君,王立安,郭锋. 饱和黏土地基中桩基水平振动的时域半解析法研究. 振动与冲击. 2024(13): 90-97 .
    2. 杨松立,魏亚,叶周景,杨海露,杨碧宇,李鹏鹏,汪林兵. 车辆荷载激励下的水泥混凝土路面振动信号时频能量解析及车速估算. 中国公路学报. 2024(12): 310-325 .
    3. 王震强,李奎奎,汪过兵. 摩擦效应影响下矩形移动载荷作用对地面的动力响应分析. 力学与实践. 2024(06): 1242-1250 .
    4. 罗晨晖,麻友良. 基于路面平整度模拟的汽车行驶振动感应研究. 计算机仿真. 2023(02): 172-176 .
    5. 杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙. 浙江大学学报(工学版). 2023(07): 1410-1417 .
    6. 李奎奎,赵建昌,王立安. 矩形移动荷载作用下饱和-非饱和土双层地基的动力响应分析. 力学与实践. 2022(01): 131-137 .
    7. 王立安,余云燕. 振动压路机作业引起地基振动的解析法研究. 振动与冲击. 2022(04): 48-54 .
    8. 霍卫安. 冲孔桩施工引起周围地表振动的测试研究. 甘肃科技. 2022(01): 26-29 .
    9. 黄鹏,殷琳,张雯洁,周卓琳,易丙旺. 公共交通引起的地面振动衰减分析. 宁波工程学院学报. 2022(03): 15-20 .
    10. 李韶华,冯桂珍,丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报. 2021(09): 2554-2568 . 本站查看
    11. 王立安,张家玮,李奎奎,刘生纬. 饱和-非饱和土双层地基在振动压路机作用下的振动响应. 岩土力学. 2021(11): 3182-3190 .
    12. 邹鸿翔,郭丁华,甘崇早,唐曙光,袁俊,魏克湘,张文明. 磁力耦合道路能量收集设计与动力学分析. 力学学报. 2021(11): 2941-2949 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1763) PDF downloads (761) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return