EI、Scopus 收录
中文核心期刊
Incompatible Numerical Manifold Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 79-88. DOI: 10.6052/0459-1879-2006-1-2004-521
Citation: Incompatible Numerical Manifold Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 79-88. DOI: 10.6052/0459-1879-2006-1-2004-521

Incompatible Numerical Manifold Method

  • This paper deduces the additional incompatible displacement terms on internal parameters for three-dimensional elasticity problems, establishes the improved incompatible numerical manifold method. Based on eliminating the internal parameters, the expressing formula of element strain matrix and element stiffness matrix are given. Calculating accuracy and computing efficiency can be greatly increased by incompatible numerical manifold method without adding generalized degrees of freedom. In order to apply this method to engineering, an explicit treatment of incompatible numerical method is provided. To illustrate the stability of the present approach, numerical examples are analyzed. It is shown that this method produces highly accurate and stable results.Keywords: numerical manifold method; incompatible element; additional displacement term; generalized degree of freedom; static concentration
  • Related Articles

    [1]Huang Yingqing, Xiao Qizhi, Feng Miaolin, Chen Haibo. THEORY AND APPLICATIONS OF INCOMPATIBLE AND HYBRID ELEMENT METHOD——IN MEMORY OF PROF. WU CHANGCHUN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 293-297. DOI: 10.6052/0459-1879-20-381
    [2]Liu Dengxue, Zhang Youliang, Liu Gaomin. HIGHER-ORDER NUMERICAL MANIFOLD METHOD BASED ON ANALYSIS-SUITABLE T-SPLINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 212-222. DOI: 10.6052/0459-1879-16-217
    [3]Xu Dongdong, Zheng Hong, Yang Yongtao, Wu Aiqing. MULTIPLE CRACK PROPAGATION BASED ON THE NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 471-481. DOI: 10.6052/0459-1879-14-347
    [4]Yang Yongtao, Xu Dongdong, Zheng Hong. EVALUATION ON STRESS INTENSITY FACTOR OF CRACK UNDER DYNAMIC LOAD USING NUMERICAL MANIFOLD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 730-738. DOI: 10.6052/0459-1879-14-024
    [5]Wei Wei, Jiang Qinghui, Zhou Chuangbing. STUDY ON NUMERICAL MANIFOLD METHOD BASED ON FINITE DEFORMATION THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 78-86. DOI: 10.6052/0459-1879-13-081
    [6]Su Haidong. Study on numerical manifold method with fixed meshes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 169-178. DOI: 10.6052/0459-1879-2011-1-lxxb2010-123
    [7]Hongfen Gao, Yumin Cheng. Complex variable numerical manifold method for elasticity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 480-488. DOI: 10.6052/0459-1879-2009-4-2007-485
    [8]Meshless numerical manifold method based on unit partition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 496-500. DOI: 10.6052/0459-1879-2004-4-2003-442
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]FURTHER STUDY OF THE IDENTITY OF INCOMPATIBLE DISPLACEMENT ELEMENT AND GENERALIZED HYBRID ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(5): 564-570. DOI: 10.6052/0459-1879-1991-5-1995-877

Catalog

    Article Metrics

    Article views (1779) PDF downloads (806) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return