EI、Scopus 收录
中文核心期刊
Ren Yudong, Chen Jianbing. SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1196-1121. DOI: 10.6052/0459-1879-20-427
Citation: Ren Yudong, Chen Jianbing. SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1196-1121. DOI: 10.6052/0459-1879-20-427

SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL

  • Received Date: December 12, 2020
  • Concrete is a typical quasi-brittle material, and the nonlinear analysis and crack simulation of concrete during loading are still challenging issues. Classical fracture mechanics and damage mechanics describe crack topology from discrete and continuous perspectives respectively, and became two of the most powerful tools for solid crack simulation and prediction problems. Since the beginning of this century, in the phase field theory and peridynamics significant progress has been made in predicting the crack initiation and propagation and nonlinear analysis. Recently, a new nonlocal macro-meso-scale consistent damage (NMMD) model has been developed based on the basic ideas of phase field theory and peridynamics. In this model, the concepts of material point pair are introduced to characterize the meso-scale damage due to deformation. Then the topologic damage which quantifies the degree of discontinuity in macroscopic solid is defined as the weighted average of meso-scale damage in the influence domain. Through the physically-based energetic degradation function which bridges the topologic damage and energy dissipation, the topologic damage can be inserted into the framework of continuum damage mechanics, which allows this model to simulate the crack process naturally while performing nonlinear analysis without prescribed initial crack and potential propagation path. The present paper takes into account the spatial variability of the meso-scale physical parameters and employs the NMMD model to simulate the whole loading process of typical concrete specimens. The model meso-scale parameters are calibrated through the 1D modeling firstly, and the relationship between the meso-scale parameters and the meso-scale physical-geometric properties of concrete is discussed. Based on the 1D-calibrated parameters, a detailed analysis through the 2D NMMD model is performed. Further, the influence of material parameter spatial variability on the behaviors of uniaxial tensile concrete specimen and notched three-point bending beam is investigated. The work in this paper provides a meaningful reference for the calibration of meso-scale parameters in the NMMD model and the investigation on nonlinear mechanical behavior of concrete and other quasi-brittle materials under complex stress state.
  • [1]
    李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社, 2014

    (Li Jie, Wu Jianying, Chen Jianbing. Stochastic Damage Mechanics of Concrete Structures. Beijing: Science Press, 2014 (in Chinese))
    [2]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图//GB18306-2015. 北京: 中国标准出版社, 2015

    ( General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Seismic Ground Motion Parameters Zonation Map of China//GB18306-2015. Beijing: Standards Press of China, 2015 (in Chinese))
    [3]
    杨木秋, 林泓. 混凝土单轴受压受拉应力-应变全曲线的试验研究. 水利学报, 1992(6):60-66

    (Yang Muqiu, Lin Hong. Experimental study on whole stress-strain under uniaxial compression and tension. Journal of Hydraulic Engineering, 1992(6):60-66 (in Chinese))
    [4]
    Yue JG, Kunnath SK, Xiao Y. Uniaxial concrete tension damage evolution using acoustic emission monitoring. Construction and Building Materials, 2020,232:117281
    [5]
    李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析. 同济大学学报(自然科学版), 2003,31(5):505-509

    (Li Jie, Lu Zhaohui, Zhang Qiyun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress. Journal of Tongji University, 2003,31(5):505-509 (in Chinese))
    [6]
    刘汉昆, 李杰. 单轴受拉状态下混凝土非局部化细观损伤模型. 同济大学学报(自然科学版), 2014,42(2):203-209

    (Liu Hankun, Li Jie. Nonlocal micro-damage model for concrete under uniaxial tension. Journal of Tongji University, 2014,42(2):203-209 (in Chinese))
    [7]
    邬翔, 李杰. 基于细观物理机制的混凝土损伤数值仿真. 建筑材料学报, 2009,12(3):259-265

    (Wu Xiang, Li Jie. Meso-mechanism based simulation of concrete damage process. Journal of Building Materials, 2009,12(3):259-265 (in Chinese))
    [8]
    李杰, 杨卫忠. 混凝土弹塑性随机损伤本构关系研究. 土木工程学报, 2009,42(2):31-38

    (Li Jie, Yang Weizhong. Elastoplastic stochastic damage constitutive law for concrete. China Civil Engineering Journal, 2009,42(2):31-38 (in Chinese))
    [9]
    任晓丹. 混凝土随机损伤本构关系试验研究. [硕士论文]. 上海: 同济大学, 2006

    (Ren Xiaodan. Experimental research on stochastic damage constitutive law of concrete. [Master Thesis]. Shanghai: Tongji University, 2006 (in Chinese))
    [10]
    吴锋. 混凝土单轴抗拉应力-应变全曲线的试验研究. [硕士论文]. 湖南: 湖南大学, 2006

    (Wu Feng. Experimental study on whole stress-strain curves of concrete under axial tension. [Master Thesis]. Changsha: Hunan University, 2006 (in Chinese))
    [11]
    Griffith AA. The phenomena of flow and rupture in solids. Philosophical Transactions of The Royal Society, 1920,221:163-198
    [12]
    Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. Journal of Applied Mechanics, 1957,24:361-364
    [13]
    Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968,35(2):379-386
    [14]
    Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 1968,16(1):13-31
    [15]
    Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 1968,16(1):1-12
    [16]
    Kachanov LM. On the rupture time under the condition of creep. Izv. Akad. Nauk, Otd. Tekh. Nauk, 1958,8:26-31
    [17]
    Ju JW. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. International Journal of Solids and Structures, 1989,25(7):803-833
    [18]
    Wu JY, Li J, Faria R. An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures, 2006,43(3-4):583-612
    [19]
    Carpinteri A, Cornetti P, Barpi F, et al. Cohesive crack model description of ductile to brittle size-scale transition: Dimensional analysis vs. renormalization group theory. Engineering Fracture Mechanics, 2003,70(14):1809-1839
    [20]
    Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999,45(5):601-620
    [21]
    Chen JS, Hillman M, Chi SW. Meshfree methods: Progress made after 20 years. Journal of Engineering Mechanics, 2017,143(4):04017001
    [22]
    Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000,48(4):797-826
    [23]
    Bourdin B, Francfort GA, Marigo JJ. The variational approach to fracture. Journal of Elasticity, 2008,91(1-3):5-148
    [24]
    Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010,83(10):1273-1311
    [25]
    Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010,199(45):2765-2778
    [26]
    Borden MJ, Hughes TJR, Landis CM, et al. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering, 2014,273:100-118
    [27]
    Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017,103:72-99
    [28]
    Wu JY, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018,119:20-42
    [29]
    Wu JY. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 2018,328:612-637
    [30]
    吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021,53(2):301-329

    (Wu Jianying. On the theoretical and numerical aspects of the unified phase-field theoryfor damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):301-329 (in Chinese))
    [31]
    Hai L, Wu JY, Li J. A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids. Engineering Fracture Mechanics, 2020,225:106821
    [32]
    吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测. 力学学报, 2021

    (Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics 2021 (in Chinese))
    [33]
    Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000,48(1):175-209
    [34]
    Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005,83(17):1526-1535
    [35]
    Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007,88(2):151-184
    [36]
    黄丹, 章青, 乔丕忠 等. 近场动力学方法及其应用. 力学进展, 2010,40(4):448-459

    (Huang Dan, Zhang Qing, Qiao Peizhong, et al. A review on peridynamics (PD) method and its applications. Advances in Mechanics, 2010,40(4):448-459 (in Chinese))
    [37]
    杜强. 从毗域动力学到随机跳跃过程: 非局部平衡范例及非局部微积分框架. 中国科学: 数学, 2015,45(7):939-952

    (Du Qiang. From peridynamics to stochastic jump process: Illustrations of nonlocal balance laws and nonlocal calculus framework. Science China Mathematics, 2015,45(7):939-952 (in Chinese))
    [38]
    Huang D, Lu GD, Qiao PZ. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 2015, 94-95:111-122
    [39]
    Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design, 2007,237(12):1250-1258
    [40]
    Lu GD, Chen JB. A new nonlocal macro-meso-scale consistent damage model for crack modeling of quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2020,362:112802
    [41]
    卢广达, 陈建兵 . 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):1-14

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):1-14 (in Chinese))
    [42]
    Chen JB, Ren YD, Lu GD. Meso-scale physical modeling of energetic degradation function in the nonlocal macro-meso-scale consistent damage model for quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2021,374:113588
    [43]
    May IM, Duan Y. A local arc-length procedure for strain softening. Computers & Structures, 1997,64(1):297-303
    [44]
    Rao GA, Prasad BKR. Influence of the roughness of aggregate surface on the interface bond strength. Cement and Concrete Research, 2002,32(2):253-257
    [45]
    Vanmarcke E. Random Fields: Analysis and Synthesis. Singapore: World Scientific, 2010
    [46]
    Chen JB, He JR, Ren XD, et al. Stochastic harmonic function representation of random fields for material properties of structures. Journal of Engineering Mechanics, American Society of Civil Engineers, 2018,144(7):04018049
    [47]
    梁诗雪, 任晓丹, 李杰. 混凝土破坏过程模拟的随机介质模型, 中国科学: 技术科学, 2013,43:807-815

    (Liang Shixue, Ren Xiaodan, Li Jie. A random medium model for simulation of concrete failure. Sci China Tech Sci, 2013,56:1273-1281 (in Chinese))
  • Related Articles

    [1]Yan Lyuhao, Jin Yanfei, Sun Jialiang. THERMAL VIBRATION ANALYSIS OF SPATIAL STRUCTURES CONSIDERING RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1233-1245. DOI: 10.6052/0459-1879-25-019
    [2]Peng Zonghuan, Sheng Jianlong, Ye Zuyang, Li Shuo. RELIABILITY ANALYSIS AND INVESTIGATION OF LARGE DEFORMATION FAILURE MODES IN SPATIALLY VARIABLE SLOPE USING t-SNE-AMARS-MPM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3274-3289. DOI: 10.6052/0459-1879-24-229
    [3]Gao Zihan, Cheng Xiaoqi, Fan Ziye, Jiang Nan. INVESTIGATION ON THE DISTRIBUTION OF UNIFORM MOMENTUM ZONES WITH VARIABLE-INTERVAL SPATIAL AVERAGE DETECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2193-2202. DOI: 10.6052/0459-1879-24-098
    [4]Zhang Liqi, Yue Chengyu, Zhao Yonghui. PARAMETER-VARYING AEROELASTIC MODELING AND ANALYSIS FOR A VARIABLE-SWEEP WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3134-3146. DOI: 10.6052/0459-1879-21-275
    [5]Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088
    [6]Qu Jie, Qin Wei, Jin Quanlin. STUDY ON THE PARAMETER VALUE DOMAIN OF MACRO-MICRO CONSTITUTIVE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 920-930. DOI: 10.6052/0459-1879-14-049
    [7]Wu Danqing, Lü Zhenzhou, Cheng Lei. AN SEPARATION OF THE ALEATORY AND EPISTEMIC UNCERTAINTIES WITH CORRELATED NORMAL VARIABLES AND ANALYSIS OF THE INFLUENCE OF PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 794-801. DOI: 10.6052/0459-1879-14-014
    [8]Xie Yong, Liu Pan, Cai Guoping. PARAMETER IDENTIFICATION OF FLEXIBLE PLATE BASED ON THE ACCELERATION OUTPUT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 128-135. DOI: 10.6052/0459-1879-13-124
    [9]Xiaowei Chen, Xiaoli Li, Yuze Chen, Haijun Wu, Fenglei Huang. The third dimensionless parameter in the penetration dynamics of rigid projectiles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-84. DOI: 10.6052/0459-1879-2007-1-2006-069
    [10]A homotopy technique with the parameter expansion and its application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5): 667-672. DOI: 10.6052/0459-1879-2005-5-2004-129
  • Cited by

    Periodical cited type(17)

    1. 张俊,吴成阳,方汉良,孙载超,王凯龙,汤腾飞. Z4型冗余驱动并联操作器的驱动特性研究. 机械工程学报. 2024(07): 66-78 .
    2. 孙德源,王军义,徐志刚,鲍建文,王志军,刘慧芳. 基于分数阶导纳与逆动力学鲁棒控制的并联机器人人机协作. 机器人. 2024(06): 725-731 .
    3. 朱小蓉,赵磊,沈惠平. 3T1R解耦并联机构动力学与惯量耦合特性分析. 农业机械学报. 2023(09): 448-458 .
    4. 孔凡国,李肇星,柯子旭. Delta并联机器人机构多目标优化设计. 机床与液压. 2022(09): 35-40 .
    5. 李小彭,樊星,李凯,张凌越. 考虑负载时变的线路巡检机器人动态性能分析. 东北大学学报(自然科学版). 2022(05): 660-666+688 .
    6. 杨桃月,陈国雄,曹阳. 基于PSO优化模糊PID的3-PRS并联机器人控制仿真分析. 装备制造技术. 2022(08): 12-16 .
    7. 付天忠,高国琴,方志明. 克服链间耦合并联机构双增益自适应滑模控制. 软件导刊. 2022(11): 44-51 .
    8. 贾登峰,万小金. 基于链间耦合的并联悬架的刚度优化. 机械传动. 2021(03): 40-45 .
    9. 倪仕全,田大鹏. 3-PRS并联机构的动力学惯量耦合特性分析. 机电工程. 2021(07): 815-821 .
    10. 代小林,宋世杰,宫大为. 六自由度并联机构模态空间解耦控制. 哈尔滨工程大学学报. 2020(08): 1237-1243 .
    11. 李研彪,郑航,孙鹏,徐涛涛,王泽胜,秦宋阳. 考虑关节摩擦的5-PSS/UPU并联机构动力学建模及耦合特性分析. 机械工程学报. 2019(03): 43-52 .
    12. 蒲志新,张文健. 3-CPS并联机器人的机构分析及仿真研究. 测控技术. 2019(04): 31-36 .
    13. Hai-Qiang Zhang,Hai-Rong Fang,Bing-Shan Jiang,Shuai-Guo Wang. Dynamic Performance Evaluation of a Redundantly Actuated and Over-constrained Parallel Manipulator. International Journal of Automation and Computing. 2019(03): 274-285 .
    14. 山显雷,程刚,陈世彪. 考虑力补偿的2(3PUS+S)并联机器人主动关节同步控制. 机械工程学报. 2019(11): 46-52 .
    15. 杨妍. 基于三连杆机器人的动力学分析. 工业控制计算机. 2018(02): 85-86+89 .
    16. 葛一敏,袁海辉,甘春标. 基于步态切换的欠驱动双足机器人控制方法. 力学学报. 2018(04): 871-879 . 本站查看
    17. 山显雷,程刚. 高速运动下并联机器人主动支链的动力学耦合特性. 机器人. 2017(05): 603-607 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (1192) PDF downloads (193) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return