Citation: | Li Chaoxin, Wu Xiaogang, Sun Yuqin, Qin Yingze, Duan Wangping, Zhang Meizhen, Wang Yanqin, Chen Weiyi, Wei Xiaochun. MECHANOTRANSDUCTION OF THE CELL AND ITS PRIMARY CILIUM IN THE MICROFLUIDIC CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 260-277. DOI: 10.6052/0459-1879-20-283 |
[1] |
吕永钢, 詹世革 . 第三届全国生物力学青年学者学术研讨会报告综述. 力学学报, 2019,51(1):306-311.
(L Yonggang, Zhan Shige . Review of the third national symposium on biomechanic. Chinese Journal of Theoretical and Applied Mechanics 2019,51(1):306-311 (in Chinese))
|
[2] |
林金明 . 微流控芯片细胞分析. 北京: 科学出版社, 2018.
(Lin Jinming. Microfluidic Chip Cell Analysis. Beijing: Science Press, 2018 (in Chinese))
|
[3] |
Du J, Liu X, Xu X . Advances in isolation and enrichment of circulating tumor cells in microfluidic chips. Chinese Journal of Chromatography 2014,32(1):7-12
|
[4] |
Hung PJ, Lee PJ, Sabounchi P , et al. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology & Bioengineering 2005,89(1):1-8
|
[5] |
Singh S, Melnik R . Coupled thermo-electro-mechanical models for thermal ablation of biological tissues and heat relaxation time effects. Physics in Medicine and Biology 2019,64(24):245008
|
[6] |
Visone R, Giuseppe , Occhetta P , et al. A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues. Apl Bioengineering 2018,2(4):046102
|
[7] |
Qi H, Xu M . Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel. Mechanics Research Communications 2007,34(2):210-212
|
[8] |
Chaube MK, Tripathi D, Anwar BO , et al. Peristaltic creeping flow of power law physiological fluids through a nonuniform channel with slip effect. Applied Bionics and Biomechanics 2015,64(24):152802-152802
|
[9] |
王兆伟 . 力-电协同驱动细胞培养腔内微液流动的理论模拟研究. [硕士论文]. 太原: 太原理工大学, 2018.
(Wang Zhaowei . Theoretical simulation study of force-electricity cooperation driving the micro-liquid flow in the cell culture cavity. [Master thesis]. Taiyuan: Taiyuan University of Technology, 2018 (in Chinese))
|
[10] |
Guilak F, Haider MA, Setton LA , et al. Multiphasic models of cell mechanics. Cytoskeletal Mechanics 2006,5:84-102
|
[11] |
Liu Y, Mollaeian K, Ren JJM , et al. Finite element modeling of living cells for afm indentation-based biomechanical characterization. Micron (Oxford, England: 1993) 2018,116:108-115
|
[12] |
Hoang MT, Bonnet G, Perrot C . Multi-scale acoustics of partially open cell poroelastic foams. Journal of the Acoustical Society of America 2013,133(5):3289
|
[13] |
裘钧 . 骨细胞力学的实验和数值研究. [博士论文]. 北京: 清华大学, 2011.
(Qiu Jun . Experimental and numerical research on bone cell mechanics. [PhD Thesis]. Beijing: Tsinghua University, 2011 (in Chinese))
|
[14] |
Islam MD, Raffaella R . An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression. Journal of Biomechanics 2019,89:48-56
|
[15] |
Zhang D . Oscillatory pressurization of an animal cell as a poroelastic spherical body. Annals of Biomedical Engineering 2005,33(9):1249
|
[16] |
武晓刚, 于纬伦, 王兆伟 等. 一种骨小管中液体流动产生的流量及切应力模型. 力学学报, 2016,48(5):1208-1216.
(Wu Xiaogang, Yu Weilun, Wang Zhaowei , et al. A model of flow and shear stress generated by fluid flow in bone tubules. Chinese Journal of Theoretical and Applied Mechanics 2016,48(5):1208-1216 (in Chinese))
|
[17] |
Mollaeian K, Liu Y, Bi S , et al. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J Mech Behav Biomed Mater 2018,78:65-73
|
[18] |
Wei F, Lan F, Liu B , et al. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization. Applied Physics Letters 2016,109(21):7159
|
[19] |
Bangs F, Anderson KV . Primary cilia and mammalian hedgehog signaling. Cold Spring Harbor Perspectives in Biology 2016,9(5):a028175
|
[20] |
Berbari NF, Connor AK, Haycraft CJ , et al. The primary cilium as a complex signaling center. Current Biology 2009,19(13):R526-R535
|
[21] |
Eichholz KF, Hoey DA . The Role of the Primary Cilium in Cellular Mechanotransduction. Mechanobiology 2016: 61-73
|
[22] |
Lim YC, Cooling MT, Long DS . Computational models of the primary cilium and endothelial mechanotransmission. Biomechanics and Modeling in Mechanobiology 2015,14(3):665-678
|
[23] |
Spasic M, Jacobs CR . Primary cilia: Cell and molecular mechanosensors directing whole tissue function. Seminars in Cell & Developmental Biology 2017,71:42-52
|
[24] |
Khayyeri H, Barreto S, Lacroix D . Primary cilia mechanics affects cell mechanosensation: a computational study. Journal of Theoretical Biology 2015,379:38-46
|
[25] |
Moore ER, Xing ZY, Seul RH , et al. Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. Stem Cell Research & Therapy 2018,9(1):190
|
[26] |
Goetz SC, Anderson KV . The primary cilium: A signalling centre during vertebrate development. Nature Reviews Genetics 2010,11(5):331-344
|
[27] |
Temiyasathit S, Jacobs CR . Osteocyte primary cilium and its role in bone mechanotransduction. Chemistry of Life 2010,1192(1):422-428
|
[28] |
Luu VZ, Biswajit C, Mohammed AO , et al. Role of endothelial primary cilia as fluid mechanosensors on vascular health. Atherosclerosis 2018,275:196
|
[29] |
Ahern DP, Thompson CL, Duffy MP , et al. Primary Cilia Mechanobiology. Mechanobiology 2020: 99-115
|
[30] |
Buljan VA, Graeber MB, Holsinger RM , et al. Calcium--axonemal microtubuli interactions underlie mechanism(s) of primary cilia morphological changes. Journal of Biological Physics 2017,44:53-80
|
[31] |
Flaherty J, Feng Z, Peng Z , et al. Primary cilia have a length-dependent persistence length. Biomechanics and Modeling in Mechanobiology 2020,19(2):445-460
|
[32] |
Blythman R, Persoons T, Jeffers N , et al. Localised dynamics of laminar pulsatile flow in a rectangular channel. International Journal of Heat & Fluid Flow 2017,66(8):8-17
|
[33] |
王兆伟, 武晓刚, 陈魁俊 等. 一种力-电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137.
(Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics 2018,50(1):124-137 (in Chinese))
|
[34] |
Miller AD, Chama A, Louw TM , et al. Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects. PloS One 2017,12(8):e0181717
|
[35] |
陈魁俊 . 骨单元到骨细胞尺度的多孔弹性力学信号传导. [硕士论文]. 太原: 太原理工大学, 2019.
(Chen Kuijun . Signal transduction of poroelasticity from bone unit to bone cell scale. [Master Thesis]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese))
|
[36] |
Rydholm S, Zwartz G, Kowalewski J , et al. Mechanical properties of primary cilia regulate the response to fluid flow. American Journal of Physiology-renal Physiology 2010,298(5):1096-1102
|
[37] |
Molla-Herman A, Ghossoub R, Blisnick T , et al. The ciliary pocket: An endocytic membrane domain at the base of primary and motile cilia. Journal of Cell Science 2010,123(10):1785-1795
|
[38] |
于纬伦, 武晓刚, 李朝鑫 等. 骨陷窝-骨细胞形状和方向对骨单元内液体流动行为的影响. 力学学报, 2020,52(3):244-254.
(Yu Weilun, Wu Xiaogang, Li Chaoxin , et al. Effect of osteocyte-lacunae shape and direction on the fluid flow behavior in osteon. Chinese Journal of Theoretical and Applied Mechanics 2020,52(3):244-254 (in Chinese))
|
[39] |
冯世亮, 周吕文, 吕守芹 等. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟. 力学学报, 2020,52(3):255-264.
(Feng Shiliang, Zhou Lvwen , L Shouqin, et al. Mechanochemical coupling model and numerical simulation for cell-cell adhesion in suspended epithelial cells. Chinese Journal of Theoretical and Applied Mechanics 2020,52(3):255-264 (in Chinese))
|
[40] |
Vaughan TJ, Mullen CA, Verbruggen SW , et al. Bone cell mechanosensation of fluid flow stimulation: A fluid--structure interaction model characterising the role integrin attachments and primary cilia. Biomechanics & Modeling in Mechanobiology 2015,14(4):703-718
|
[41] |
Boehlke C, Kotsis F, Patel V , et al. Primary cilia regulate mtorc1 activity and cell size through lkb1. Nature Cell Biology 2010,12(11):1115-1122
|
[42] |
Tao F, Jiang T, Tao H , et al. Primary cilia: versatile regulator in cartilage development. Cell Proliferation 2020,2:1-12
|
[43] |
Jamal MH, Nauli SM , The effect of primary cilia restoration on cancer cells. The FASEB Journal. 2020,34(S1):1-1
|
[44] |
Mcglashan SR, Cluett EC, Jensen CG , et al. Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Developmental Dynamics An Official Publication of the American Association of Anatomists 2008,237(8):2013-2020
|
[45] |
Jacobs C, Spasic M. Regulation of gene expression by modulating primary cilia length. US: US20190015423, 2019 -01-17
|
[46] |
Schwartz EA, Leonard ML, Bizios R , et al. Analysis and modeling of the primary cilium bending response to fluid shear. American Journal of Physiology 1997,272(2):132-138
|
[1] | Wang Zhaowei, Wu Xiaogang, Chen Kuijun, Xue Yanan, Wang Ningning, Zhao Teng, Yu Weilun, Wang Yanqin, Chen Weiyi. A THEORETICAL MICROFLUIDIC FLOW MODEL FOR THE CELL CULTURE CHAMBER UNDER THE PRESSURE GRADIENT AND ELECTRIC FIELD DRIVEN LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 124-137. DOI: 10.6052/0459-1879-17-317 |
[2] | Chen Ti, Liu Weidong, Sun Mingbo, Fan Xiaoqiang, Liang Jianhan. PARAMETRIC STUDY ON THE BLENDING FUNCTION IN TRANSITION ZONE OF THE LES/RANS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 487-493. DOI: 10.6052/0459-1879-2012-3-20120304 |
[3] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[4] | Hongliang Dai, Yiming Fu, J.H. Yang. Electromagnetoelastic behaviors of functionally graded piezoelectric[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 55-63. DOI: 10.6052/0459-1879-2007-1-2006-127 |
[5] | Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282 |
[6] | Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017 |
[7] | THE CANONICAL HAMILTONIAN REPRESENTATIONS IN A CLASS OF PARTIAL DIFFERENTIAL EQUATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 347-357. DOI: 10.6052/0459-1879-1999-3-1995-040 |
[8] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[9] | Dynamic buckle propagation on Chater's beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 460-467. DOI: 10.6052/0459-1879-1993-4-1995-666 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |