EI、Scopus 收录
中文核心期刊
Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224
Citation: Li Shutao, Liu Jingbo, Bao Xin. IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1838-1849. DOI: 10.6052/0459-1879-20-224

IMPROVEMENT OF EXPLICIT ALGORITHMS STABILITY WITH VISCO-ELASTIC ARTIFICIAL BOUNDARY ELEMENTS

  • Received Date: June 01, 2020
  • Viscoelastic artificial boundary elements are commonly applied in the analysis of semi-infinite wave propagation problems, which can accurately absorb the scattered waves generated in the calculation domain. However, the mass density, the stiffness and the damping coefficient of the viscoelastic artificial boundary element are different from those of the internal domain. Therefore, the instability often occurs in the boundary region when the explicit time-domain stepwise integration is performed in the overall model, so, the calculation efficiency of the explicit integral for the overall system is affected. Currently, there is no effective solution to this problem which remains to be settled to conduct efficient large-scale wave propagation simulation. For the two dimensional viscoelastic artificial boundary element, we establish the edge subsystem and corner subsystem which can represent the typical characteristics of the overall system, by the analysis method of transfer matrix spectral radius based on the central difference format commonly used, we derive the analytical solutions of the stability conditions of the edge subsystem and corner subsystem. After that, we analyze the influence of various physical parameters of the two dimensional viscoelastic artificial boundary element on the stability conditions, and obtain the method for improving the stability condition of the explicit algorithm by increasing the mass density of the viscoelastic artificial boundary element. The homogeneous and layered half-space examples show that, set the mass density of the internal element as the upper limit of the mass density of the viscoelastic artificial boundary element, the method proposed in this paper can effectively improve the numerical stability of the explicit time-domain integration when using the viscoelastic artificial boundary elements, without affecting the calculation accuracy, and the calculation efficiency can be significantly improved in the explicit dynamic analysis. The model size (distance from the scattered wave source to the artificial boundary) has a little effect on the stability of the explicit integral which can be ignored.
  • [1] Alterman ZS, Aboudi J, Karal FC. Pulse propagation in a laterally heterogeneous solid elastic sphere. Geophysical Journal of the Royal Astronomical Society, 1970,21(3):243-260
    [2] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件. 力学学报, 2006,38(1):49-56
    [2] ( Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in fea for near field wave problem. Chinese Journal of Theoretical and Applied Mechanics, 2006,38(1):49-56 (in Chinese))
    [3] 邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现:一维波动. 力学学报, 2017,49(2):367-379
    [3] ( Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: one dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):367-379 (in Chinese))
    [4] 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427
    [4] ( Liu Jingbo, Bao Xin, Tan Hui, et al. Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese))
    [5] 章小龙, 李小军, 陈国兴 等. 黏弹性人工边界等效载荷计算的改进方法. 力学学报, 2016,48(5):1126-1135
    [5] ( Zhang Xiaolong, Li Xiaojun, Chen Guoxing, et al. An improved method of the calculation of equivalent nodal forces in viscous-elastic artificial boundary. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1126-1135. (in Chinese))
    [6] 刘晶波, 谷音, 杜义欣. 一致黏弹性人工边界及黏弹性边界单元. 岩土工程学报, 2006,28(9):1070-1075
    [6] ( Liu Jingbo, Gu Yin, Du Yixin. Consistent viscous-spring artificial boundaries and viscous-spring boundary elements. Chinese Journal of Geotechnical Engineering, 2006,28(9):1070-1075 (in Chinese))
    [7] 谷音, 刘晶波, 杜义欣. 三维一致黏弹性人工边界及等效黏弹性边界单元. 工程力学, 2007,24(12):31-37
    [7] ( Gu Yin, Liu Jingbo, Du Yixin. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element. Engineering Mechanics, 2007,24(12):31-37 (in Chinese))
    [8] 王启云, 张家生, 孟飞 等. 高速铁路路基模型列车振动荷载模拟. 振动与冲击, 2013(6):48-51, 77
    [8] ( Wand Qiyun, Zhang Jiasheng, Meng Fei, et al. Simulation of train vibration load on the subgrade testing model of high-speed railway. Journal of Vibration and Shock, 2013(6):48-51, 77 (in Chinese))
    [9] 尹尚之, 叶丹, 梁应军 等. 二维弧形一致黏弹性边界单元在 ABAQUS 中的应用. 世界地震工程, 2017,33(1):69-74
    [9] ( Yin Shangzhi, Ye Dan, Liang Yingjun, et al. Application of 2D arc consistent viscous-spring artificial boundary element in ABAQUS. World Earthquake Engineering, 2017,33(1):69-74 (in Chinses))
    [10] 贾磊, 解咏平, 李慎奎. 爆破振动对邻近隧道衬砌安全的数值模拟分析. 振动与冲击, 2015(11):181-185, 219
    [10] ( Jia Lei, Xie Yongping, Li Shenkui. Numerical simulation for impact of blasting vibration on nearby tunnel lining safety. Journal of Vibration and Shock, 2015(11):181-185, 219 (in Chinese))
    [11] Bao X, Liu JB, Wang DY, et al. Modification research of the internal substructure method for seismic wave input in deep underground structure-soil systems. Shock and Vibration, 2019: 1-13
    [12] Liu JB, Bao X, Wang DY, et al. The internal substructure method for seismic wave input in 3D dynamic soil-structure interaction analysis. Soil Dynamic and Earthquake Engineering, 2019,127:1-12
    [13] 刘晶波, 谭辉, 宝鑫 等. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43
    [13] ( Liu Jingbo, Tan Hui, Bao Xin, et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese))
    [14] Li ST, Liu JB, Yang Z, et al. Multiscale method for seismic response of near-source sites. Advances in Civil Engineering, 2020: 1-25
    [15] 刘恒, 廖振鹏. 波动数值模拟的一种显式方法-二维波动. 力学学报, 2010,42(6):1104-1116
    [15] ( Liu Heng, Liao Zhenpeng. An explicit method for numerical simulation of wave motion-2D wave motion. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(6):1104-1116 (in Chinese))
    [16] 马天宝, 任会兰, 李健 等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016,48(3):599-608
    [16] ( Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):599-608 (in Chinese))
    [17] 何涛. 基于 ALE 有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,50(2):395-404
    [17] ( He Tao. A partitioned strong coupling algorith for fluid-structure interaction using arbitrary lagrangian-eulerian finite eleent forulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):395-404 (in Chinese))
    [18] 李鸿晶, 梅雨辰, 任永亮. 一种结构动力时程分析的积分求微方法. 力学学报, 2019,51(5):1507-1516
    [18] ( Li Hongjing, Mei Yuchen, Ren Yongliang. An integral differentiation procedure for dynamic time-history response analysis of structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1507-1516 (in Chinese))
    [19] 谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法-SH波动. 力学学报, 2012,44(4):745-752
    [19] ( Xie Zhinan, Liao Zhenpeng. Mechanism of high frequency instability caused by transmitting boundary and method of its elimination-SH wave. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):745-752 (in Chinese))
    [20] 关慧敏, 廖振鹏. 时域局部人工边界的稳定性分析方法概述. 世界地震工程, 1997(2):1-7
    [20] ( Guan Huimin, Liao Zhenpeng. Overview of stability analysis methods for local artificial boundaries in the time domain. World Earthquake Engineering, 1997(2):1-7 (in Chinese))
    [21] 关慧敏, 廖振鹏. 局部人工边界稳定性的一种分析方法. 力学学报, 1996,28(3):376-380
    [21] ( Guan Huimin, Liao Zhenpeng. A method for the stability analysis of local artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 1996,28(3):1601-1606 (in Chinese))
    [22] 李小军, 杨宇. 透射边界稳定性控制措施探讨. 岩土工程学报, 2012(4):641-645
    [22] ( Li Xiaojun, Yang Yu. Measures for stability control of transmitting boundary. Journal of Geotechnical Engineering, 2012(4):641-645 (in Chinese))
    [23] Liao ZP, Liu JB. Numerical instabilites of a local transmitting boundary. Earthq Eng Struct Dyn, 1992,21:65-77
    [24] 关慧敏, 廖振鹏. 一种改善多次透射边界稳定性的措施. 地震工程与工程震动, 1997(4):2-9
    [24] ( Guan Huimin, Liao Zhenpeng. A measure to improve the stability of multiple transmission boundary. Earthquake Engineering and Engineering Vibration, 1997(4):2-9 (in Chinese))
    [25] Liu J, Sharan SK. Analysis of dynamic contact of cracks in viscoelastic media. Computer Methods in Applied Mechanics and Engineering, 1995,121(1-4):187-200
    [26] Kamel AH. A stability checking procedure for finite-difference schemes with boundary conditions in acoustic media. Bull Seism Soc Am, 1989,79(5):1601-1606
    [27] 李述涛, 刘晶波, 宝鑫 等. 采用黏弹性人工边界单元时显式算法稳定性分析. 工程力学, 2020, doi: 10.6052/j.issn.1000-4750.2019.12.0755
    [27] ( Li Shutao, Liu Jingbo, Bao Xin, et al. Stability analysis of explicit algorithms with visco-elastic artificial boundary elements. Engineering Mechanics, 2020, doi: 10.6052/j.issn.1000-4750.2019.12.0755 (in Chinses))
    [28] Hughes TJR. Analysis of transient algorithms with particular reference to stability behavior. Computational Methods for Transient Analysis, 1983,I:67-156
    [29] 王勖成, 邵敏. 有限单元法基本原理和数值方法. 北京: 清华大学出版社, 1997: 66-67
    [29] ( Wang Xucheng, Shao Min. Basic Principle and Numerical Method of Finite Element Method. Beijing: Tsinghua University Press, 1997: 66-67(in Chinese))
    [30] 申志强, 夏军, 宋殿义 等. 基于高阶剪切变形理论的四边形求积元板单元及其应用. 力学学报, 2018,50(5):1093-1103
    [30] ( Shen Zhiqiang, Xia Jun, Song Dianyi, et al. A quadrilateral quadrature plate element based on reddy's higher-order shear deformation theory and its application. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1093-1103 (in Chinese))
    [31] Abaqus Analysis User's Manual (version 6.14). ABAQUS, INC., 2013
  • Related Articles

    [1]Qi Zhaohui Fang Huiqing. Study on redundant constraints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 390-399. DOI: 10.6052/0459-1879-2011-2-lxxb2009-596
    [2]Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1197-1205. DOI: 10.6052/0459-1879-2010-6-lxxb2009-543
    [3]一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249
    [4]TWO POINT BOUNDARY VALUE INVERSE DYNAMIC METHODS OF FLEXIBLE MANIPULATORS ——THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 373-379. DOI: 10.6052/0459-1879-1997-3-1995-241
    [5]PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240
    [6]ON DYNAMICS OF MULTIBODY SYSTEM DESCRIBED BY FULLY CARTESIAN COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 84-94. DOI: 10.6052/0459-1879-1997-1-1995-199
    [7]THE LIAPUNOV’S METHOD FOR THE INVERSE DYNAMICS OF A SPACE MANIPULATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 558-563. DOI: 10.6052/0459-1879-1996-5-1995-369
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return