Processing math: 100%
EI、Scopus 收录
中文核心期刊
Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189
Citation: Peng Xiangfeng, Li Luxian. STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1221-1234. DOI: 10.6052/0459-1879-20-189

STATE OF THE ART OF CONSTITUTIVE RELATIONS OF HYPERELASTIC MATERIALS

  • Received Date: June 02, 2020
  • Hyperelastic materials are commonly used in practical engineering with the prominent feature that a very large deformation may be produced under a force but the initial state can be completely recovered when the force is removed. Hyperelastic materials are typically nonlinear elastic ones, whose behaviors are in general characterized by their strain energy functions. For several decades, a lot of mathematical models and physical models have been proposed to study their constitutive relations through constructing the form of energy functions. However, a complete constitutive relation suitable for varied deformation modes and the entire deformation range is still the significant issue to expect in this field. This paper summarizes and analyzes the latest research status of constitutive relations of hyperelastic materials from three perspectives: (1) volume change modes including incompressible and compressible ones; (2) deformation modes such as uniaxial tension, shearing, biaxial tension and combined stretch and shear; (3) the entire range of deformation including small deformation, moderate deformation and large deformation. The latest progresses indicate that, in order to comprehensively describe experimental data of a given hyperelastic material and to apply it in practical problems, it is necessary to establish a complete constitutive relationship of compressible hyperelastic materials, which is suitable for varied deformation modes and the entire range of deformation. The authors suggest an implementation procedure for establishing the complete constitutive relationship of an actual hyperelastic material and an approach to construct the strain energy function of a compressible material.
  • [1] Chaves EWV. Notes on continuum mechanics (First edition). Netherlands: Springer Netherlands, 2013
    [2] 郭辉, 胡文军, 陶俊林. 泡沫橡胶材料的超弹性本构模型. 计算力学学报, 2013,4:575-579
    [2] ( Guo Hui, Hu Wenjun, Tao Junlin. The superelasticty constitutive model for foam rubber materials. Chinese Journal of Computational Mechanics, 2013,4:575-579 (in Chinese))
    [3] 谈炳东, 许进升, 贾云飞 等. 短纤维增强EPDM包覆薄膜超弹性本构模型. 力学学报, 2017,49(2):317-323
    [3] ( Tan Bingdong, Xu Jinsheng, Jia Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):317-323 (in Chinese))
    [4] 谈炳东, 许进升, 孙朝翔 等. 短纤维增强三元乙丙橡胶横观各向同性黏-超弹性本构模型. 力学学报, 2017,49(3):677-684
    [4] ( Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, et al. A transversely isotropic visco-hyperelastic constitutive model for short fiber reinforced EPDM. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):677-684 (in Chinese))
    [5] Boyce MC, Arruda EM. Constitutive models of rubber elasticity: A review. Rubber Chemistry and Technology, 2000,73(3):504-523
    [6] Puglisi G, Saccomandi G. Multi-scale modelling of rubber-like materials and soft tissues: An appraisal. Proceedings of the Royal Society A, 2016,472(2187):20160060
    [7] Destrade M, Saccomandi G, Sgura I. Methodical fitting for mathematical models of rubber-like materials. Proceedings of the Royal Society A, 2017,473(2198):20160811
    [8] Wilber JP, Criscione JC. The Baker-Ericksen inequalities for hyperelastic models using a novel set of invariants of Hencky strain. International Journal of Solids and Structures, 2005,42(5-6):1547-1559
    [9] Kshitiz U, Ghatu S, Douglas S. Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids. Journal of the Mechanics and Physics of Solids, 2019,124:115-142
    [10] Truesdell C, Toupin R. Static grounds for inequalities in finite strain of elastic materials. Archive for Rational Mechanics and Analysis, 1963,12(1):1-33
    [11] Safar A, Mihai LA. The nonlinear elasticity of hyperelastic models for stretch-dominated cellular structures. International Journal of Non-Linear Mechanics, 2018,106:144-154
    [12] Johnson AR, Quigley CJ, Mead J L. Large strain viscoelastic constitutive models for rubber. Part I: Formulations. Rubber Chemistry and Technology, 1994,67(5):904-917
    [13] Mihai LA, Goriely A. How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proceedings of the Royal Society A, 2017,473(2207):20170607
    [14] Ball JM, James RD. The scientific life and influence of Clifford Ambrose Truesdell III. Archive for Rational Mechanics and Analysis, 2002,161(1):1-26
    [15] Rivlin RS. Large elastic deformation of isotropic materials: I. Fundamental concepts, II. Some uniqueness theories for pure homogeneous deformations. Philosophical Transactions of the Royal Society of London A, 1948,240:459-508
    [16] Ogden RW. Non-linear Elastic Deformations (reprint of Ellis Horwood, Chichester, 1984). Mineola, NY: Dover, 1997
    [17] Pence TJ, Gou K. On compressible versions of the incompressible neo-Hookean material. Mathematics and Mechanics of Solids, 2014,20(2):157-182
    [18] 匡震邦. 非线性连续介质力学基础. 西安: 西安交通大学出版社, 1989
    [18] ( Kuang Zhenbang. Non-linear Continuum Mechanics. Xi'an: Xi'an Jiaotong University Press, 1989 (in Chinese))
    [19] Truesdell C, Noll W. The non-linear Field Theories of Mechanics (3rd edn). New York: Springer, 2004
    [20] Fortes MA, Nogueira MT. The Poisson effect in cork. Mater. Sci. Eng. A, 1989,122(2):227-232
    [21] Dinwoodie JM. Timber, Its Nature and Behavior. New York: Van Nostrand Reinhold, 1981
    [22] Sanborn B, Song B. Poisson's ratio of a hyperelastic foam under quasi-static and dynamic loading. International Journal of Impact Engineering, 2019,123:48-55
    [23] Beda T. An approach for hyperelastic model-building and parameters estimation: A review of constitutive models. European Polymer Journal, 2014,50:97-108
    [24] Rivlin RS, Saunders DW. Large elastic deformation of isotropic materials--VII: Experiments of the deformation of rubber. Philosophical Transactions of the Royal Society of London A, 1951,243:251-288
    [25] Treloar LRG. The Physics of Rubber Elasticity. Oxford: Clarendon Press, 2005
    [26] Carroll MM. A strain energy function for vulcanized rubbers. Journal of Elasticity, 2011,103(2):173-187
    [27] Seibert DJ, Sch?che N. Direct comparison of some recent rubber elasticity models. Rubber Chemistry and Technology, 2000,73(2):366-384
    [28] 李晓芳, 杨晓翔. 橡胶材料的超弹性本构模型. 弹性体, 2005,1:52-60
    [28] ( Li Xiaofang, Yang Xiaoxiang. Hyperelastic constitutive models of rubber materials. China Elastomerics, 2005,1:52-60 (in Chinese))
    [29] James HM, Guth E. Theory of the elastic properties of rubber. Journal of Chemical Physics, 1943,11(10):455-481
    [30] Flory PJ. Network structure and the elastic properties of vulcanized rubber. Chemical Reviews, 1944,35(1):51-75
    [31] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412
    [32] Treloar LRG, Riding G. A non-Gaussian theory for rubber in biaxial strain. I. Mechanical Properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1979,369(1737):261-280
    [33] Wu PD, Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 1993,41(3):427-456
    [34] Budday S, Sommer G, Birkl C. Mechanical characterization of human brain tissue. Acta Biomaterilia, 2017,48:319-340
    [35] Hartmann S. Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. International Journal of Solids and Structures, 2001,38(44-45):7999-8018
    [36] Mooney M. A theory of large elastic deformation. Journal of Applied Physics, 1940,11(9):582-592
    [37] Rivlin RS. "Large Elastic Deformations" in " Rheology: Theory and Applications, Vol. 1". Eirich FR Ed, New York: Academic Press, 1956
    [38] 张希润, 蔡力勋, 陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法. 力学学报, 2020,52(3):787-796
    [38] ( Zhang Xirun, Cai Lixun, Chen Hui. Hyperelastic indentation models and the dual-indentation method based on energy density equivalence. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):787-796 (in Chinese))
    [39] Yeoh OH. Characterization of elastic properties of carbon black filled rubber vulcanizates. Rubber Chemistry and Technology, 1990,63(5):792-805
    [40] Gent AN, Thomas AG. Forms for the stored (strain) energy function for vulcanized rubber. Journal of Polymer Science, 1958,28(118):625-628
    [41] Liu T, Shen M, Huang L, et al. Characterization of hyperelastic mechanical properties for youth corneal anterior central stroma based on collagen fibril crimping constitutive model. Journal of the Mechanical Behavior of Biomedical Materials, 2019: 103575, doi: 10.1016/j.jmbbm.2019.103575
    [42] Valanis KC, Landel RF. The strain-energy function of a hyperelastic material in terms of the extension ratios. Journal of Applied Physics, 1967,38(7):2997-3002
    [43] Gent AN. A new constitutive relation for rubber. Rubber Chemistry and Technology, 1996,69(1):59-61
    [44] Pucci E, Saccomandi G. A note on the Gent model for rubber-like materials. Rubber Chemistry and Technology, 2002,75(5):839-851
    [45] Ehlers W, Eipper G. The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mechanica, 1998,130(1-2):17-27
    [46] Horgan CO, Murphy JG. Constitutive modeling for moderate deformations of slightly compressible rubber. Journal of Rheology, 2009,53(1):153-168
    [47] Flory PJ. Thermodynamic relations for high elastic materials. Transactions of the Faraday Society, 1961,57(5):829
    [48] Kumar N, Rao VV. Hyperelastic Mooney-Rivlin model: Determination and physical interpretation of material constants. MIT International Journal of Mechanical Engineering, 2016,6(1):43-46
    [49] Blatz PJ, Ko WL. Application of finite elastic theory to deformation of rubbery materials. Transactions of the Society of Rheology, 1962,6(1):223-251
    [50] Karoui A, Trifa M, Arfaoui M, Renard Y. A plane strain analysis of the elastostatic fields near the notch-tip of a Blatz-Ko material. Theoretical and Applied Fracture Mechanics, 2019,103:102309
    [51] Hartmann S, Neff P. Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. International Journal of Solids and Structures, 2003,40(11):2767-2791
    [52] Penn RW. Volume changes accompanying the extension of rubber. Transactions of the Society of Rheology, 1970,14(4):509-517
    [53] Fong JT, Penn RW. Construction of a strain-energy function for an isotropic elastic material. Transactions of the Society of Rheology, 1975,19(1):99-113
    [54] Adams LH, Gibson RE. The compressibility of rubber. Rubber Chemistry and Technology, 1930,3(4):555-562
    [55] Bridgman PW. The compression of sixty-one solid substances to 25000 kgcm2, determined by a new rapid method. Proceedings of the American Academy of Arts and Sciences, 1944,76:9-24
    [56] Ogden RW. Volume changes associated with the deformation of rubber-like solids. Journal of the Mechanics and Physics of Solids, 1976,24(6):323-338
    [57] Hassani R, Ansari R, Rouhi H. Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: A numerical variational method. International Journal of Non-Linear Mechanics, 2019,116:39-54
    [58] Kim B, Lee SB, Lee J, Cho S, Park H, Yeom S, Park SH. A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. International Journal of Precision Engineering and Manufacturing, 2012,13(5):759-764
    [59] Dobrynin AV, Carrillo J-MY. Universality in nonlinear elasticity of biological and polymeric networks and gels. Macromolecules, 2011,44(1):140-146
    [60] Hart-Smith LJ. Elasticity parameters for finite deformations of rubber-like materials. Zeitschrift Für Angewandte Mathematik Und Physik Zamp(ZAMP), 1966,17(5):608-626
    [61] Nunes LCS, Moreira DC. Simple shear under large deformation: Experimental and theoretical analyses. European Journal of Mechanics A/ Solids, 2013,42:315-322
    [62] Mihai LA, Chin L, Janmey PA, Goriely A. A comparison of hyperelastic constitutive models applicable to brain and fat tissues. Journal of the Royal Society Interface, 2015,12(110):20150486
    [63] McKenna GB. Deformation and flow of matter: interrogating the physics of materials using rheological methods. Journal of Rheology, 2012,56(1):113-158
    [64] Jones DF, Treloar LRG. The properties of rubber in pure homogeneous strain. Journal of Physics D: Applied Physics, 1975,8(11):1285-1304
    [65] Carroll MM. Molecular chain networks and strain energy functions in rubber elasticity. Philosophical Transactions of the Royal Society A, 2019,377(2144):20180067
  • Related Articles

    [1]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [2]Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. DOI: 10.6052/0459-1879-13-174
    [3]Strategy of selecting points via number theoretical method in probability density evolution analysis of stochastic response of structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 127-133. DOI: 10.6052/0459-1879-2006-1-2005-054
    [4]研究了雷诺数Re=200, 1000, 线速度比α=0.5,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021
    [5]The probability density evolution method for dynamic reliability assessment of nonlinear stochastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2003-202
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]THE PROBABILITY DENSITY FUNCTIONS OF THE STATIONARY RESPONSE OF CERTAIN CLASSES OF NONLINEAR SYSTEMS TO STOCHASTIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 92-102. DOI: 10.6052/0459-1879-1991-1-1995-813
  • Cited by

    Periodical cited type(12)

    1. 王翠艳,石少轩,王明昊,陈恩利,曲兴业. 含黏弹性阻尼的架桥机制动系统非线性动力学特性分析. 江苏大学学报(自然科学版). 2025(02): 221-230 .
    2. 唐建花,李向红,王敏,申永军,李壮壮. 广义分数阶van der Pol-Duffing振子的动力学响应与隔振效果研究. 振动与冲击. 2022(01): 10-18 .
    3. 陈恩利,王明昊,王美琪,常宇健. 含有分数阶阻尼的SD振子系统非线性动力学响应特征研究. 振动工程学报. 2022(05): 1068-1075 .
    4. 秦浩,温少芳,申永军,邢海军,王军. 基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究. 振动与冲击. 2021(06): 33-40+134 .
    5. 薛程,夏兆旺,卢志伟,鞠福瑜,茅凯杰. 分数阶半主动颗粒阻尼隔振系统动力学特性分析. 振动与冲击. 2021(21): 194-200 .
    6. 郭建斌,申永军,李航. 分数阶拟周期Mathieu方程的动力学分析. 力学学报. 2021(12): 3366-3375 . 本站查看
    7. 李航,申永军,李向红,韩彦军,彭孟菲. Duffing系统的主-亚谐联合共振. 力学学报. 2020(02): 514-521 . 本站查看
    8. 武薇,申永军,杨绍普. 基于排列熵理论的非线性系统特征提取研究. 振动与冲击. 2020(07): 67-73 .
    9. 薛程,卢志伟,苏战发,许祥曦,夏兆旺. 分数阶双层隔振系统动力学特性分析. 船舶力学. 2020(11): 1487-1494 .
    10. 赵珧冰,林恒辉,黄超辉,陈林聪. 温度场中悬索受多频激励组合联合共振响应研究. 振动与冲击. 2019(03): 207-213 .
    11. 姜源,申永军,温少芳. 分数阶van der Pol振子的超谐与亚谐联合共振. 振动工程学报. 2019(05): 863-873 .
    12. 黄超辉,赵珧冰. 多频激励下悬索非线性共振特性受温度影响分析. 应用力学学报. 2019(06): 1435-1441+1526 .

    Other cited types(22)

Catalog

    Article Metrics

    Article views (2487) PDF downloads (1091) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return