Processing math: 100%
EI、Scopus 收录
中文核心期刊
Yang Ben, Lei Jianchang, Wang Yuhang. FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1610-1620. DOI: 10.6052/0459-1879-20-117
Citation: Yang Ben, Lei Jianchang, Wang Yuhang. FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1610-1620. DOI: 10.6052/0459-1879-20-117

FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION

  • Received Date: April 13, 2020
  • In view of the limitations of the traditional reentry trajectory optimization method, which has slow convergence speed and high sensitivity to initial values, a fast algorithm for reentry trajectory based on sequential convex optimization is proposed. The method takes the change rate of inclination angle as the control variable which improves existing convex strategy and uses B-spline curve to discretize the control variable, which can effectively suppress the sawtooth phenomenon in the process of numerical optimization due to the numerical discrete method. At the same time, to avoid the problem that the algorithm appears pseudo-infeasible near the initial guess value, additional virtual control and a "backtracking straight line" search method are added to improve the stability of the algorithm, these can improve the stability, rapidity and smoothness of the algorithm. In order to study the aerodynamic parameter perturbation in the reentry process of aircraft, a generalized polynomial chaotic theory research method with few sampling points, easy implementation and high computational efficiency is proposed. A robust optimization model of reentry trajectory based on the combination of generalized polynomial chaos and convex optimization is established. The model considers the effect of aerodynamic parameter disturbance on the optimization results during the optimization process, which can avoid the complex iterative design of conventional trajectory and guidance law. What's more, it can effectively reduce the sensitivity of optimal trajectory to aerodynamic parameter perturbation, and under the disturbance of uncertain aerodynamic parameters, which still can ensure the safety of the aircraft smooth completion of the mission. At the end,taking the reentry mission of a reusable aircraft in the United States as an example, the rapidity of reentry trajectory optimization method based on sequence convex optimization and the anti-interference ability of robust optimization model to aerodynamic parameter perturbation are verified and it shows that this method has certain engineering application.
  • [1] Richie G. The common aero vehicle: Space delivery system of the future// AIAA Space Technology Conference and Exposition, Albuquerque, NM, 1999
    [2] Hermant A. Homotopy algorithm for optimal control problems with a second-order state constraint. Applied Mathematics & Optimization, 2010,61(1):85-127
    [3] Istratie V. Optimal profound entry into atmosphere with minimum heat and Constraints// AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2001: 4069
    [4] Bollino K, Oppenheimer M, Doman D. Optimal guidance command generation and tracking for reusable launch vehicle reentry// AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006: 6691
    [5] 黄长强, 国海峰, 丁达理. 高超声速滑翔飞行器轨迹优化与制导综述. 宇航学报, 2014,35(4):369-379
    [5] ( Huang Changqiang, Guo Haifang, Ding Dali. A survey of trajectory optimization and guidance for hypersonic gliding vehicle. Journal of Astronautics, 2014,35(4):369-379 (in Chinese))
    [6] Rea J. Launch vehicle trajectory optimization using a Legendre pseudo-spectral method// AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003: 5640
    [7] Harpold JC, Gavert DE. Space shuttle entry guidance performance results. Journal of Guidance, Control & Dynamics, 1983,6(6):442-447
    [8] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004: 157-160
    [9] Nesterov Y, Nemirovskii A. Interior-point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics Press, 1994: 102-137
    [10] Ploen SR. Convex programming approach to powered descent guidance for mars landing. Journal of Guidance Control & Dynamics, 2007,30(5):1353-1366
    [11] A?ıkmese B, Carson JM, Blackmore L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Transactions on Control Systems Technology, 2013,21(6):2104-2113
    [12] Harris MW, A?ıkmese B. Lossless convexification of non-convex optimal control problems for state constrained linear systems. Automatica, 2014,50(9):2304-2311
    [13] Harris MW, A?ıkmese B. Lossless convexification for a class of optimal control problems with linear state constraints// Decision and Control IEEE, 2013: 7113-7118
    [14] Scharf DP, Regehr MW, Vaughan GM, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket// Aerospace Conference IEEE, 2014
    [15] Liu X, Shen Z, Lu P. Entry trajectory optimization by second-order cone programming. Journal of Guidance Control & Dynamics, 2015,39(2):227-241
    [16] Wang Z, Grant MJ. Constrained trajectory optimization for planetary entry via sequential convex programming// AIAA Atmospheric Flight Mechanics Conference, 2016: 3241
    [17] 林晓辉, 于文进. 基于凸优化理论的含约束月球定点着陆轨道优化. 宇航学报, 2013,34(7):901-908
    [17] ( Lin Xiaohui, Yu Wenjin. Constrained trajectory optimization for lunar pin point landing based on convex optimization theory. Journal of Astronautics, 2013,34(7):901-908 (in Chinese))
    [18] 樊朋飞, 郭云鹤, 凡永华 等. HGV 平衡滑翔式轨迹可达区域计算方法研究. 计算机测量与控制, 2019,27(5):136-140
    [18] ( Fan Pengfei, Guo Yunhe, Fan Yonghua, et al. Footprint calculation of HGV with equilibrium gliding trajectory. Computer Measurement and Control, 2019,27(5):136-140 (in Chinese))
    [19] 邵楠, 闫晓东. 火箭垂直回收多阶段最优轨迹规划方法. 宇航学报, 2019,40(10):1187-1196
    [19] ( Shao Nan, Yan Xiaodong. Multi-stage trajectory optimization for vertical pin-point landing of a reusable launch vehicle. Journal of Astronautics, 2014,35(4):369-379 (in Chinese))
    [20] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法. 北京航空航天大学学报, 2020,46(3):579-587
    [20] ( Li Jun, Jiang Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem. Journal of Beijing University of Aeronautics and Astronautics, 2020,46(3):579-587 (in Chinese))
    [21] Rangaraj R, Chaudhuri A, Gupta S. The use of polynomial chaos for parameter identification from measurements in nonlinear dynamical systems. Zamm Journal of Applied Mathematics & Mechanics, 2015,12(1):1372-1392
    [22] Xiong F, Xiong Y, Xue B. Trajectory optimization under uncertainty based on polynomial chaos expansion// AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, 2015
    [23] Li X, Nair PB, Zhang ZG, et al. Aircraft robust trajectory optimization using nonintrusive polynomial chaos. Journal of Aircraft, 2014,51(51):1592-1603
    [24] Grant MJ, Bolender MA. Rapid, robust trajectory design using indirect optimization methods// AIAA Atmospheric Flight Mechanics Conference, Dallas, USA, 2015
    [25] Yu Z, Zhao Z, Cui P. An observability-based trajectory optimization considering disturbance for atmospheric entry// AIAA Guidance, Navigation, and Control Conference, California, USA, 2016
    [26] Jones BA, Doostan A, Born GH. Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. Journal of Guidance Control & Dynamics, 2013,36(2):430-444
    [27] Xiu D, Karniadakis GE. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 2002,24(2):619-644
    [28] Eldred MS, Webster CG, Constantine P. Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos// Structural Dynamical and Materials Conference, 2008
    [29] Cottrill GC. Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms. Air Force Institute of Technology. 2012
    [30] Tao J, Zeng X, Cai W, et al. Stochastic sparse-grid collocation algorithm for periodic steady-state analysis of nonlinear system with process variations// Proceedings of the 2007 Asia and South Pacific Design Automation Conference, 2007
    [31] Gottlieb D, Xiu D. Galerkin method for wave equations with uncertain coefficients. Communications in Computational Physics, 2008,3(2):505-518
    [32] Knio OM, Najm HN, Ghanem RG. A stochastic projection method for fluid flow: I. Basic formulation. Journal of computational Physics, 2001,173(2):481-511
    [33] 熊芬芬, 杨树兴, 刘宇 等. 工程概率不确定性分析方法. 北京: 科学出版社, 2015
    [33] ( Xiong Fenfen, Yang Shuxing, Liu Yu, et al. Engineering Probability Uncertainty Analysis Method. Beijing: Science Press, 2015 (in Chinese))
    [34] Andersen ED, Andersen KD. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm// High Performance Optimization, Springer, Boston, MA, 2000: 197-232
  • Related Articles

    [1]Zhao Huan. ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 223-238. DOI: 10.6052/0459-1879-22-391
    [2]Li Ran, Liu Shutian. ROBUST TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING THE UNCERTAINTY OF SURFACE LAYER THICKNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1471-1479. DOI: 10.6052/0459-1879-20-419
    [3]Wang Dong. ROBUST DYNAMIC TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURE SUBJECTED TO HARMONIC EXCITATION OF LOADING POSITION UNCERTAINTY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448. DOI: 10.6052/0459-1879-21-009
    [4]Fu Zhifang, Zhao Junpeng, Wang Chunjie. ROBUST TOPOLOGY OPTIMIZATION DESIGN OF STRUCTURES WITH MULTIPLE-UNCERTAINTY LOAD CASES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650. DOI: 10.6052/0459-1879-15-072
    [5]Song Shufang, Lü Zhenzhou. THE ROBUST OPTIMIZATION DESIGN BASED ON MOMENT ESTIMATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 735-744. DOI: 10.6052/0459-1879-11-256
    [6]Du Jianming Guo Xu. Fail-safe optimal design of truss structures based on robust optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 725-730. DOI: 10.6052/0459-1879-2011-4-lxxb2010-460
    [7]Li Jiaozan Gao Zhenghong. Multi objective optimization methodology for airfoil robust design under geometry uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 611-615. DOI: 10.6052/0459-1879-2011-3-lxxb2010-066
    [8]Luo Yangjun Kang Zhan Deng Zichen. Robust topology optimization design of structures with multiple load cases[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 227-234. DOI: 10.6052/0459-1879-2011-1-lxxb2010-147
    [9]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [10]Robust optimization for structures using non-probabilistic convex method of set theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 295-300. DOI: 10.6052/0459-1879-2005-3-2003-347
  • Cited by

    Periodical cited type(5)

    1. 王培臣,闫循良,王宽,郑雄. 基于随机响应面与混沌多项式的鲁棒轨迹优化. 系统工程与电子技术. 2023(10): 3226-3239 .
    2. 闫循良,王培臣,夏文杰,王宽,杨春伟. 基于混沌多项式的再入滑翔鲁棒轨迹凸优化. 西北工业大学学报. 2023(05): 850-859 .
    3. 闫循良,王培臣,王舒眉,杨宇轩,王宽. 基于混沌多项式的RBCC飞行器上升段鲁棒轨迹快速优化. 航空学报. 2023(21): 306-323 .
    4. 吉晓亮,陈柏屹,刘燕斌. 融合临近空间环境参数的高超飞行器爬升指令优化方法. 舰船电子工程. 2023(12): 50-55 .
    5. 王培臣,张睿轩,闫循良. 不确定条件下高超声速俯冲弹道鲁棒优化. 飞控与探测. 2022(06): 61-68 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (785) PDF downloads (93) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return