EI、Scopus 收录
中文核心期刊
Li Haohao, Zhang Jin, Luo Yazhong. SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1560-1568. DOI: 10.6052/0459-1879-20-113
Citation: Li Haohao, Zhang Jin, Luo Yazhong. SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1560-1568. DOI: 10.6052/0459-1879-20-113

SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION

  • Received Date: April 13, 2020
  • With the development of space control technology, the safety of spacecraft in orbit has been paid more and more attention. The autonomous approach of the spacecraft with active maneuverability to the target spacecraft is a serious threat to the safety of the spacecraft in orbit. In the close orbital pursuit-evasion (PE) game of spacecraft, the acquisition of relative position, velocity and acceleration is the basis of the PE game strategy of both sides. In the case of incomplete information acquisition by both sides, an evasion control strategy based on the filtering estimation of maneuvering target and the maximizing line-of-sight yaw rate is proposed. The escaper obtains navigation information such as the relative position, velocity, and acceleration of the chaser based on the current statistical model filtering algorithm, and the chaser obtains navigation information of the escaper also based on the current statistical model filtering algorithm. The chaser uses the proportional guidance law to approach the escaper autonomously. The escaper calculates the line-of-sight direction and line-of-sight yaw rate relative to the chaser, and uses an active evasion strategy based on maximizing the line-of-sight yaw rate to escape. The different evasion strategies and different operating conditions are simulated. The results show that when the maneuverability of the escaper reaches more than 60% of the chaser, the escaper can escape successfully by using the proposed evasion strategy; the evasion strategy is not sensitive to the measurement accuracy and operating frequency of observation equipment, and the effect of evasion strategy is related to the response time, the earlier the escaper receives the warning information, the better the evasion strategy will be.
  • [1] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [1] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [2] 尹婷婷, 邓子辰, 胡伟鹏 等. 空间刚性杆--弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018,50(1):87-98
    [2] ( Yin Tingting, Deng Zichen, Hu Weipeng, et al. Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):87-98 (in Chinese))
    [3] 王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报, 2020,52(3):805-816
    [3] ( Wang Enmei, Wu Shunan, Wu Zhigang. Active-control-oriented dynamic modelling for on-orbit assembly space structure. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):805-816 (in Chinese))
    [4] 敬忠良. 航天器自主操作的测量与控制. 北京: 中国宇航出版社, 2011
    [4] ( Jing Zhongliang. Measurement and Control of Autonomous Operation of Spacecraft. Beijing: China Aerospace Press, 2011 (in Chinese))
    [5] Li XR, Jilkov VP. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(4):1333-1364
    [6] Singer RA. Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 1970(4):473-483
    [7] 周宏仁, 敬忠良, 王培德 等. 机动目标跟踪. 北京: 国防工业出版社, 1991
    [7] ( Zhou Hongren, Jin Zhongliang, Wang Peide, et al. Tracking of Maneuvering Target. Beijing: National Defense Industry Press, 1991 (in Chinese))
    [8] 李菲, 潘平俊. 机动目标模型的研究进展. 火力与指挥控制, 2007,32(10):17-21
    [8] ( Li Fei, Pan Pingjun. The research and progress of dynamic models for maneuvering target tracking. Fire Control and Command Control, 2007,32(10):17-21 (in Chinese))
    [9] Zhou WM, Wang H, Tang GJ, et al. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network. Advances in Space Research, 2016,58(6):938-949
    [10] 姚党鼐, 王振国. 航天器在轨防碰撞自主规避策略. 国防科技大学学报, 2012,34(6):100-110
    [10] ( Yao Dingnai, Wang Zhenguo. Active collision avoidance maneuver strategy for on-orbit spacecraft. Journal of National University of Defense Technology, 2012,34(6):100-110 (in Chinese))
    [11] Bombardelli C. Analytical formulation of impulsive collision avoidance dynamics. Celestial Mechanics and Dynamical Astronomy, 2013,118(2):99-114
    [12] Wang S, Schaub H. Spacecraft collision avoidance using coulomb forces with separation distance and rate feedback. Journal of Guidance, Control, and Dynamics, 2012,31(3):740-750
    [13] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制. 航空学报, 2013,34(8):1934-1943
    [13] ( Zheng Zhong, Song Shenming. Adaptive coordination control of satellites within formation considering collision avoidance. Acta Aeronautica Et Astronautica Sinica, 2013,34(8):1934-1943 (in Chinese))
    [14] 罗亚中, 李振瑜, 祝海. 航天器轨道追逃微分对策研究综述. 中国科学: 技术科学, 2020, doi: 10.1360/SST-2019-0174
    [14] ( Luo Yazhong, Li Zhenyu, Zhu Hai. Survey on spacecraft orbital pursuit-evasion differential games. Science China Technological Sciences, doi: 10.1360/SST-2019-0174 (in Chinese))
    [15] 张秋华, 孙松涛, 谌颖 等. 时间固定的两航天器追逃策略及数值求解. 宇航学报, 2014,35(5):537-544
    [15] ( Zhang Qiuhua, Sun Songtao, Chen Yin, et al. Strategy and numerical solution of pursuit-evasion with fixed duration for two spacecraft. Journal of Astronautics, 2014,35(5):537-544 (in Chinese))
    [16] 郝志伟, 孙松涛, 张秋华 等. 半直接配点法在航天器追逃问题求解中的应用. 宇航学报, 2019,40(6):628-635
    [16] ( Hao Zhiwei, Sun Songtao, Zhang Qiuhua, et al. Application of semi-direct collocation method for solving pursuit-evasion problems of spacecraft. Journal of Astronautics, 2019 40(6):628-635 (in Chinese))
    [17] 刘源, 李玉玲, 郝勇 等. 航天器三维空间追逃问题研究. 系统工程与电子技术, 2018,40(4):868-877
    [17] ( Liu Yuan, Li Yuling, Hao Yong, et al. Research on three dimensional space pursuit-evasion of spacecraft. Systems Engineering & Electronics, 2018,40(4):868-877 (in Chinese))
    [18] Yu DT, Luo YZ, Jiang ZC, et al. Multi-objective evolutionary optimization of evasive maneuvers including observability performance// 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, May 25-28, 2015
    [19] 于大腾, 王华, 周晚萌. 考虑空间几何关系的反交会规避机动方法. 国防科技大学学报, 2016,38(6):89-94
    [19] ( Yu Dateng, Wang Hua, Zhou Wanmeng. Anti-rendezvous evasive maneuver method considering space geometrical relationship. Journal of National University of Defense Technology, 2016,38(6):89-94 (in Chinese))
    [20] Shen HX, Casalino L. Revisit of the three-dimensional orbital pursuit-evasion game. Journal of Guidance, Control, and Dynamics, 2018,41(8):1823-1831
    [21] Li Z, Zhu H, Yang Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion. Acta Astronautica, 2019: 201-210
    [22] Ye D, Shi MM, Sun ZW. Satellite proximate interception vector guidance based on differential games. Chinese Journal Aeronautic, 2018,31:1352-1361
    [23] Weiss M, Shima T. Minimum effort pursuit/evasion guidance with specified miss distance. Journal of Guidance, Control, and Dynamics, 2016,39(5):1069-1079
    [24] Weiss M, Shima T. Minimum effort intercept and evasion guidance algorithms for active aircraft defense. Journal of Guidance, Control, and Dynamics, 2016,39(10):2297-2311
    [25] 祝海. 基于微分对策理论的航天器追逃博弈研究. [硕士论文]. 长沙: 国防科学技术大学, 2017
    [25] ( Zhu Hai. Spacecraft orbital pursuit-evasion based on differential game theory. [Master Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
    [26] 陈文胜, 陈新海. 比例导引法在航天器交会中的应用. 西北工业大学学报, 1994,12(1):31-36
    [26] ( Chen Wensheng, Chen Xinhai. Application of proportional navigation to rendezvous problems. Journal of Northwestern Polytechnical University, 1994,12(1):31-36 (in Chinese))
    [27] 李九人, 李海阳, 陈磊 等. 基于比例导引的空间交会寻的段飞行任务设计. 飞行力学, 2009,27(4):58-61
    [27] ( Li Jiuren, Li Haiyang, Chen Lei, et al. Homing mission design of space rendezvous based on proportional guidance. Flight Dynamics, 2009,27(4):58-61 (in Chinese))
    [28] Li KB, Liang YG, Su WS, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception. Science China Technological Sciences, 2018,61:1161-1174
    [29] 黎克波. 拦截机动目标的制导律研究. [博士论文]. 长沙: 国防科学技术大学, 2016
    [29] ( Li Kebo. Research on guidance laws for intercepting maneuvering targets. [PhD thesis]. Changsha: National University of Defense Technology, 2016 (in Chinese))
  • Related Articles

    [1]Zhang Yaoxun, Shi Huailong, Zeng Jing, Liu Jianing, Zhou Junyi. MULTI-OBJECTIVE CONTROL METHOD FOR ACTIVE VERTICAL DAMPERS IN HIGH-SPEED TRAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 212-223. DOI: 10.6052/0459-1879-24-436
    [2]Zou Lin, Wang Jiahui, Wang Cheng, Zheng Yunlong, Xu Jinli. ACTIVE CONTROL OF VORTEX-INDUCED VIBRATION OF CYLINDR BASED ON VELOCITY AND DISPLACEMENT FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1834-1846. DOI: 10.6052/0459-1879-23-183
    [3]Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. DOI: 10.6052/0459-1879-20-147
    [4]Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
    [5]Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. DOI: 10.6052/0459-1879-11-198
    [6]Liu Song Cai Guoping Dong Xingjian. Time-domain dynamic modeling and active control of offshore platform[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 737-745. DOI: 10.6052/0459-1879-2011-4-lxxb2010-373
    [7]Nenggang Xie, Yuwan Cen, Linsong Sun, Lu Wang. Multi-Objective Game Design of Bionics Based on Mixed-Behavior[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 229-237. DOI: 10.6052/0459-1879-2008-2-2007-183
    [8]Cell cleavage model based on active microfilaments contraction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(3): 317-321. DOI: 10.6052/0459-1879-2005-3-2004-030
    [9]ORTHOGONALITY CONDITIONS FOR ACTIVE PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1). DOI: 10.6052/0459-1879-2004-1-2002-392
    [10]ACTIVE CONTROL OF PIEZOELECTRIC INTELLIGENT ANNULAR PLATES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 366-371. DOI: 10.6052/0459-1879-1999-3-1995-042
  • Cited by

    Periodical cited type(1)

    1. ZHENG Ze-peng,WANG Shu-qing,WANG Xi-chen,YUE Wen. Compression Properties and Energy Absorption of A Novel Double Curved Beam Negative Stiffness Honeycomb Structures. China Ocean Engineering. 2024(05): 821-837 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1857) PDF downloads (149) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return