EI、Scopus 收录
中文核心期刊
Zhang Yuling, Gu Yongxia, Zhao Jieliang, Yan Shaoze. RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995. DOI: 10.6052/0459-1879-20-075
Citation: Zhang Yuling, Gu Yongxia, Zhao Jieliang, Yan Shaoze. RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 985-995. DOI: 10.6052/0459-1879-20-075

RESEARCH ON VIBRATION CHARACTERISTICS OF THE MANIPULATOR END UNDER ACTIVE CONTROL OF ARM STIFFNESS

  • Received Date: March 04, 2020
  • The structural deformation and elastic vibration of the manipulator will be caused by the flexibility of the manipulator arm during the movement, which will reduce the positioning accuracy and motion stability of the manipulator end. It is of great significance to apply structural vibration control method to the vibration suppression of the manipulator. Based on the design idea of variable stiffness active control, an active control method of arm stiffness is proposed. The stiffness of the manipulator is actively changed by changing the axial force of the manipulator arm. The nonlinear deformation of the manipulator is described by the deformation coupling method, and then the variable stiffness dynamic model of the manipulator arm is established by using the assumption mode method and Lagrange equation. Further, numerical simulation is performed to solve the variable stiffness dynamic model of the manipulator arm. On this basis, a single degree of freedom experimental device based on the active control of arm stiffness method is designed, and the vibration characteristics of the manipulator end under different preloading forces are analyzed. Numerical simulation and experimental results show that the vibration amplitude of the manipulator end is suppressed with the increase of preloading force, which verifies the effectiveness of the active control of arm stiffness. The relationship between the vibration response of the manipulator end and the preloading force is established by using the response surface method. Then the preloading force is optimized by using the Subspace Trust-region algorithm based on Interior-reflective Newton Method, and the optimal preloading force is obtained. This study can provide a theoretical basis for the fine dynamic modeling and the vibration suppression of the manipulator, and provide a direction for the study of the rigidization of economical low-stiffness materials, so as to replace the currently used expensive high-stiffness materials with cheap low-stiffness materials.
  • [1] Korayem MH, Shafei AM. Application of recursive Gibbs-Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory. Acta Astronautica, 2013,83:273-294
    [2] Meng D, She Y, Xu W, et al. Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody System Dynamics, 2018,43(4):321-347
    [3] Dwivedy SK, Eberhard P. Dynamic analysis of flexible manipulators, a literature review. Mechanism and Machine Theory, 2006,41(7):749-777
    [4] 范纪华, 章定国. 基于变形场不同离散方法的柔性机器人动力学建模与仿真. 力学学报, 2016,48(4):843-856
    [4] ( Fan Jihua, Zhang Dingguo. Dynamic modeling and simulation of flexible robots based on different discretization methods. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):843-856 (in Chinese))
    [5] Sabatini M, Monti R, Gasbarri P, et al. Adaptive and robust algorithms and tests for visual-based navigation of a space robotic manipulator. Acta Astronautica, 2013,83:65-84
    [6] Nanos K, Papadopoulos EG. On the dynamics and control of flexible joint space manipulators. Control Engineering Practice, 2015,45:230-243
    [7] Hacioglu Y, Yagiz N. Fuzzy robust backstepping with estimation for the control of a robot manipulator. Transactions of the Institute of Measurement and Control, 2019,41(10):2816-2825
    [8] Rahimi HN, Howard I, Cui L. Neural adaptive tracking control for an uncertain robot manipulator with time-varying joint space constraints. Mechanical Systems and Signal Processing, 2018,112:44-60
    [9] Liu K, Wu Y, Zhu T, et al. Improved RBF network torque control in flexible manipulator actuated by PMAs. Robotica, 2019,37(2):264-28
    [10] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [10] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [11] 谢立敏, 陈力. 漂浮基柔性空间机器人的鲁棒控制及振动抑制. 力学学报, 2012,44(6):1057-1065
    [11] ( Xie Limin, Chen Li. Robust control and vibration suppression of free-floating flexible space robot. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(6):1057-1065 (in Chinese))
    [12] 戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的 Legendre 伪谱法. 力学学报, 2016,48(4):823-831
    [12] ( Ge Xinsheng, Chen Kaijie. Path planning of free floating space robot using legendre pseudospectral method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):823-831 (in Chinese))
    [13] Yang X, Ge SS, He W. Dynamic modelling and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances. International Journal of Control, 2018,91(4):969-988
    [14] Pisculli A, Gasbarri P. A minimum state multibody/FEM approach for modeling flexible orbiting space systems. Acta Astronautica, 2015,110:324-340
    [15] Gao H, He W, Zhou C, et al. Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Transactions on Industrial Informatics, 2018,15(2):755-765
    [16] Soong TT, Costantinou MC. Passive and active structural vibration control in civil engineering. Springer, 2014
    [17] Housner GW, Bergman LA, Caughey TK, et al. Structural control: past, present, and future. Journal of Engineering Mechanics, 1997,123(9):897-971
    [18] Casciati F, Rodellar J, Yildirim U. Active and semi-active control of structures-theory and applications: A review of recent advances. Journal of Intelligent Material Systems and Structures, 2012,23(11):1181-1195
    [19] Lin CC, Lu LY, Lin GL, et al. Vibration control of seismic structures using semi-active friction multiple tuned mass dampers. Engineering Structures, 2010,32(10):3404-3417
    [20] Bian Y, Gao Z, Hu J, et al. A semi-active control method for decreasing longitudinal torsional vibration of vehicle engine system: Theory and experiments. Journal of Sound and Vibration, 2019,439:413-433
    [21] Lew JS, Juang JN, Loh CH. Adaptive vibration control of structures under earthquakes//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, Portland, Oregon, United States. International Society for Optics and Photonics, 2017,10168:101682D
    [22] Li L, Liang H. Semiactive control of structural nonlinear vibration considering the MR damper model. Journal of Aerospace Engineering, 2018,31(6):1-9
    [23] Mevada SV, Jangid RS. Seismic response of torsionally coupled building with passive and semi-active stiffness dampers. International Journal of Advanced Structural Engineering (IJASE), 2015,7(1):31-48
    [24] Pu H, Yuan S, Peng Y, et al. Multi-layer electromagnetic spring with tunable negative stiffness for semi-active vibration isolation. Mechanical Systems and Signal Processing, 2019,121:942-960
    [25] 汪志昊, 杨亚彬. 结构振动的负刚度控制. 华北水利水电学院学报, 2012,33(2):26-30
    [25] ( Wang Zhihao, Yang Yabin. Negative Stiffness Control of Structural Vibration. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012,33(2):26-30 (in Chinese))
    [26] 龚微, 熊世树. 拟负刚度隔震 Benchmark 模型减震效果及适应性. 华中科技大学学报(自然科学版), 2015,43(8):7-11
    [26] ( Gong Wei, Xiong Shishu. Effectiveness and adaptability analysis of smart base isolated benchmark model with pseudo-negative stiffness control. J Huazhong Univ of Sci & Tech (Natural Science Edition), 2012,33(2):26-30 (in Chinese))
    [27] 耿仕能, 王友渔, 陈丽莎 等. 变刚度连续型机械臂设计与控制. 宇航学报, 2018,39(12):1391-1400
    [27] ( Geng Shineng, Wang Youyu, Chen Lisha, et al. Design and control of a continuum arm with variable stiffness. Journal of Astronautics, 2018,39(12):1391-1400 (in Chinese))
    [28] Petit F, Daasch A, Albu-Sch?ffer A. Backstepping control of variable stiffness robots. IEEE Transactions on Control Systems Technology, 2015,23(6):2195-2202
    [29] Lin GL, Lin CC, Chen BC, et al. Vibration control performance of tuned mass dampers with resettable variable stiffness. Engineering Structures, 2015,83:187-197
    [30] Martins JM, Mohamed Z, Tokhi MO, et al. Approaches for dynamic modelling of flexible manipulator systems. IEE Proceedings-Control Theory and Applications, 2003,150(4):401-411
    [31] 方建士, 章定国, 王宏伟. 旋转柔性悬臂梁的固有频率分析. 机械强度, 2013,35(3):242-248
    [31] ( Fang Jianshi, Zhang Dingguo, Wang Hongwei. Natural frequencies analysis of a rotating flexible cantilever beam. Journal of Mechanical Strength, 2013,35(3):242-248 (in Chinese))
    [32] 郭振锋, 金国光, 畅博彦 等. 刚-柔性机械臂动力学建模及其动力学特性研究. 天津工业大学学报, 2013,32(1):70-74
    [32] ( Guo Zhenfeng, Jin Guoguang, Chang Boyan, et al. Research of dynamic modeling and performance for rigid-flexible manipulators. Journal of Tianjin Polytechnic University, 2013,32(1):70-74 (in Chinese))
    [33] Zhang Y, Gu Y, Liu T, et al. Dynamic behavior and parameter sensitivity of the free-floating base for space manipulator system considering joint flexibility and clearance. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019,233(3):895-910
  • Related Articles

    [1]Zheng Hanwen, Zhang Mindi, Zhou Ruiquan, Zhang Jiakun, Huang Biao. STUDY ON MULTI-STAGE SHEDDING CHARACTERISTICS OF CLOUD CAVITATION AROUND FLEXIBLE HYDROFOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(1): 17-30. DOI: 10.6052/0459-1879-24-431
    [2]Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. VIBRATIONAL CHARACTERISTICS OF HONEYCOMB SANDWICH CANTILEVER PLATE WITH CURVED-WALL CORE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180. DOI: 10.6052/0459-1879-22-305
    [3]Liu Pengfei, Yang Shaopu, Liu Yongqiang, Gu Xiaohui, Liu Zechao. DISCRETE TIME TRANSFER MATRIX MODELING OF FlEXIBLE WHEELSET AND VERTICAL VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1375-1386. DOI: 10.6052/0459-1879-22-008
    [4]Zhang Xuhui, Chen Luyang, Chen Xiaoyu, Xu Dongmei, Zhu Fulin, Guo Yan. RESEARCH ON DYNAMICS CHARACTERISTICS OF LINEAR-ARCH COMPOSED BEAM TRI-STABLE PIEZOELECTRIC ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2996-3006. DOI: 10.6052/0459-1879-21-392
    [5]Liu Xingguang, Tang Youqi, Zhou Yuan. COMPARISON OF VIBRATION CHARACTERISTICS OF THREE TYPICAL AXIALLY MOVING STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 522-532. DOI: 10.6052/0459-1879-19-304
    [6]Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
    [7]Gao Yuan, Huang Biao, Wu Qin, Wang Guoyu. EXPERIMENTAL INVESTIGATION OF THE VIBRATION CHARACTERISTICS OF HYDROFOIL IN CAVITATING FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009-1016. DOI: 10.6052/0459-1879-15-173
    [8]Wu Dafang, Zhao Shougen, Pan Bing, Wang Yuewu, Wang Jie, Mu Meng, Zhu Lin. EXPERIMENTAL STUDY ON HIGH TEMPERATURE THERMAL-VIBRATION CHARACTERISTICS FOR HOLLOW WING STRUCTURE OF HIGH-SPEED FLIGHT VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605. DOI: 10.6052/0459-1879-12-360
    [9]PARALLEL COMPUTATIONAL SCHEME FOR THE MANIPULATOR FORWARD DYNAMICS BASED ON THE NON-RECURSIVE FORMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(3): 369-372. DOI: 10.6052/0459-1879-1997-3-1995-240
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(10)

    1. 尚也轲,周校冉,李维. 基于ANSYS Workbench的机械臂瞬态动力学分析. 现代制造技术与装备. 2025(04): 4-6 .
    2. 毛开梅,邹星. 基于大数据聚类的搬运机器人抓取末端控制系统设计. 机械与电子. 2024(01): 58-62 .
    3. 叶罡宏,孙鹏涛,于福利. 空间七自由度冗余机械臂不平衡振动自动化控制技术. 中国高新科技. 2024(04): 138-142 .
    4. 王学军,熊金金. 接地棒辅助钻机振动特性分析. 振动与冲击. 2023(08): 152-159 .
    5. 谭加林,肖正明,伍星,郑胜予. 柔性关节机械臂轨迹规划及振动抑制研究. 机械科学与技术. 2023(04): 504-511 .
    6. 浦玉学,周润闰,陈演,张方. 空间机械臂碰撞过程的模糊无模型自适应振动控制. 振动与冲击. 2023(19): 14-21 .
    7. 陈洪月,蔡明航,杨辛未,戴忠桓. 更换电铲钢丝绳专用机械臂架的结构及动力学分析. 工程设计学报. 2023(05): 590-600 .
    8. 孙岩,李耸,刘香辰. 新型导管搬运机器人的静刚度及动态特性分析. 机械传动. 2021(08): 144-150 .
    9. 张玲. 基于人机工程学的虚拟机械手臂运动控制方法. 机械与电子. 2021(10): 77-80 .
    10. 李彦波,安保芹,赵彦合,蔡绍龙,朱伟东. 热冲压生产线机械臂和端拾器的动态变形. 锻压技术. 2021(12): 183-191 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1869) PDF downloads (218) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return