Processing math: 100%
EI、Scopus 收录
中文核心期刊
Yao Wenli, Liu Yanping, Yang Liusong. DYNAMIC MODELING OF NONIDEAL SYSTEM BASED ON GAUSS'S PRINCIPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 945-953. DOI: 10.6052/0459-1879-20-073
Citation: Yao Wenli, Liu Yanping, Yang Liusong. DYNAMIC MODELING OF NONIDEAL SYSTEM BASED ON GAUSS'S PRINCIPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 945-953. DOI: 10.6052/0459-1879-20-073

DYNAMIC MODELING OF NONIDEAL SYSTEM BASED ON GAUSS'S PRINCIPLE

  • Received Date: March 04, 2019
  • The Gauss's principle gives the rules to identify the real motion from the possible motion by finding the extreme value of the function, which can make the dynamic problem of the multi-body system not need to solve the differential (algebra) equation, but adopt the optimization method of solving the minimum value, therefore, how to define the appropriate Gaussian constraint function is the prerequisite for the realization of dynamic optimization method. For the ideal system, the effect of constraints on the system can be reflected by the constraint equation and so the Gaussian constraint can be expressed as a function of the particle acceleration of the system, then the dynamic problem of the system can be described as the constrained optimization problem with the objective function as the Gaussian constraint function and the optimization variable as the particle acceleration. When the non-ideal factors such as dry friction need to be taken into account in the system, the partial interaction can not be covered by the defined constraint equation and needs to be described by additional physical laws. This sort of interaction destroys the extreme value characteristics of the original Gaussian restraint function of the system. Based on Gauss's principle of the variable classification, the extreme value principle of non-ideal system is derived and proved, whose objective function is expressed by ideal constraint forces. The Gauss's principle for non-ideal system in the existing literature is discussed and it is pointed out that it is an expression of the extreme value principle given when there is no obvious function correlation between the non-ideal constraint force and the ideal constraint force. But when they have obvious function relation (such as the linear relationship between the sliding friction force and the normal constraint force in the Coulomb friction law), this form will fail. And according to the extreme value principle given, the dynamic optimization model of contact problem for multi-body system considering friction is obtained. In the examples, the optimization model and the corresponding linear complementary model are analyzed, which is found that the two are necessary and sufficient conditions for each other under the condition of satisfying the uniqueness of rigid body sliding problem, thus, the reliability of the optimization model given is proved. And the dynamic simulation is carried out by the optimization calculation method. The simulation results show the feasibility and effectiveness of combining Gaussian principle with optimization algorithm.
  • [1] 叶庆凯, 刘才山. 探讨用最优控制方法解力学问题// 第二十三届中国控制会议论文集, 2004: 356-358
    [1] ( Ye Qingkai, Liu Caishan. The discussion about using optimal control method solve mechanical problems// Proceedings Of The 23rd China Control Conference, 2004: 356-358 (in Chinese))
    [2] 刘延柱, 潘振宽, 戈新生. 多体系统动力学(第2版). 北京: 高等教育出版社, 2014
    [2] ( Liu Yanzhu, Pan Zhenkuan, Ge Xinsheng. Dynamics of Multibody Systems (2nd Edition). Beijing: Senior Education Press, 2014 (in Chinese))
    [3] Brogliato B. Nonsmooth Mechanics: Models, Dynamics and Control (3rd edition). London: Spinger-Verlag London Limited, 2016
    [4] Shabana AA. An important chapter in the history of multibody system dynamics. Journal of Computational and Nonliear Dynamics, 2016,11(6):060303
    [5] 赫孝良, 葛照强. 最优化与最优控制. 西安: 西安交通大学出版社, 2009
    [5] ( Hao Xiaoliang, Ge Zhaoqiang. Optimization and Optimal Control. Xi'an: Xi'an Jiaotong University Press, 2009 (in Chinese))
    [6] 陈滨. 分析动力学. 北京: 北京大学出版社, 2012
    [6] ( Chen Bin. Analytical Dynamics. Beijing: Peking University Press, 2012 (in Chinese))
    [7] 波波夫 E Π. 操作机器人动力学与算法. (遇立基, 陈循介译). 北京: 机械工业出版社, 1984
    [7] ( Bobofu E Π. Dynamics And Algorithm of Operating Robot. Yu Liji, Chen Dunjie, transl. Beijing: Mechanical Industry Press, 1984 (in Chinese))
    [8] Lilov L, Lorer M. Dynamic analysis of multirigid-body system based on the Gauss principle. ZAMM, 1982,62:539-545
    [9] 刘延柱. 杆网系统基于高斯原理的动力学建模. 动力学与控制学报, 2018,16(4):289-294
    [9] ( Liu Yanzhu. Dynamic modeling of pole net system based on gauss principle. Journal of Dynamics and Control, 2018,16(4):289-294 (in Chinese))
    [10] 刘延柱, 薛纭. 基于高斯原理的Cosserat弹性杆动力学模型. 物理学报, 2015,64(4):44601
    [10] ( Liu Yanzhu, Xue Yun. Dynamic model of Coserat elastic rod based on Gauss principle. Acta Physica Sinica, 2015,64(4):44601 (in Chinese))
    [11] 刘延柱. 基于高斯原理的多体系统动力学建模. 力学学报, 2014,46(6):940-945
    [11] ( Liu Yanzhu. Dynamic modeling of multibody system based on Gauss principle. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(6):940-945 (in Chinese))
    [12] Moreau JJ. Quadratic programming in mechanics: Dynamics of one-sided constraints. J. SIAM Control., 1966,4(1):153-158
    [13] 董龙雷, 闫桂荣, 杜彦亭 等. 高斯最小拘束原理在一类刚柔耦合系统分析中的应用. 兵工学报, 2001,22(3):347-351
    [13] ( Dong Longlei, Yan Guirong, Du Yanting, et al. The application of Gauss minimum restraint principle in the analysis of a kind of rigid flexible coupling system. Acta Armamentarii, 2001,22(3):347-351 (in Chinese))
    [14] 郝名望, 叶正寅. 单柔体与多柔体动力学的高斯最小拘束原理. 广西大学学报, 2011,36(2):195-204
    [14] ( Hao Mingwang, Ye Zhengyin. Gauss' principle of least constraint of single flexible body and multi-flexible body dynamics. Journal of Guangxi University (Natural Science Edition), 2011,36(2):195-204 (in Chinese))
    [15] 薛纭, 曲佳乐, 陈立群. Cosserat生长弹性杆动力学的 Gauss 最小拘束原理. 应用数学和力学, 2015,36(7):700-709
    [15] ( Xue Yun, Qu Jiale, Chen Liqun. Gauss minimum restraint principle for the dynamics of Coserat growing elastic rod. Applied Mathematics and Mechanics, 2015,36(7):700-709 (in Chinese))
    [16] 史跃东, 王德石. 高斯最小拘束原理在火炮振动分析中的应用. 火炮发射与控制学报, 2009,30(4):26-30
    [16] ( Shi Yuedong, Wang Deshi. Application of Gauss minimum constraint principle in gun vibration analysis. Journal of Gun Launch & Control, 2009,30(4):26-30 (in Chinese))
    [17] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [17] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [18] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169
    [18] ( Zhu An, Chen Li. Mechanical simulation and full order sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))
    [19] Feng Q, Tu J. Modeling and algorithm on a class of mechanical systems with unilateral constraints. Arch. Appl. Mech., 2006,76:103-116
    [20] Bruyninckx H, Khatib O. Gauss principle and the dynamics of redundant and constrained manipulators// Proceedings of the 2000 IEEE International Conference on Robotics & Automation, 2000: 2563-2569
    [21] Udwadia FE, Kalaba RE. A new perspective on constrained motion. Proc. R. Soc. Lond. A Math. Phys. Sci., 1992,439:407-410
    [22] Kalaba RE, Udwadia FE. Equations of motion for nonholonomic, constrained dynamical systems via Gauss's principle. Transactions of the ASME, 1993,60:662-668
    [23] Kalaba R, Natsuyama H, Udwadia F. An extension of Gauss's principle of least constraint. Int J General Systems, 2004,33(1):63-69
    [24] Fan YY, Kalaba RE, Natsuyama HH, et al. Reflections on the Gauss principle of least constraint. Journal of Optimization Theory and Applications, 2005,127(3):475-484
    [25] 刘才山. 分析动力学中的基本方程与非完整约束. 北京大学学报(自然科学版), 2016,52(4):756-766
    [25] ( Liu Caishan. The fundamental equations in analytical mechanics for nonholonomic systems. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):756-766 (in Chinese))
    [26] Pfeiffer F. Multibody Dynamics with Unilateral Contacts. United States of America: John Wiley and Sons. Inc, 1995
    [27] Udwadia FE. New general principle of mechanics and its application to general nonideal nonholonomic systems. Journal of Engineering Mechanics, 2005. 131(4):444-450
    [28] 姚文莉, 戴葆青. 广义坐标形式的高斯最小拘束原理及其推广. 力学与实践, 2014,36(6):779-785
    [28] ( Yao Wenli, Dai Baoqing. Gauss principle of least constraint in generalized coordinates and its generalization. Mechanics in Engineering, 2014,36(6):779-785 (in Chinese))
    [29] 姚文莉. 基于广义坐标形式的高斯最小拘束原理的多刚体系统动力学建模. 北京大学学报(自然科学版), 2016,52(4):708-712
    [29] ( Yao Wenli. Dynamical modeling of multi-rigid-body system based on Gauss principle of least constraint in generalized coordinates. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(4):708-712 (in Chinese))
    [30] 杨流松, 姚文莉, 岳嵘. 优化形式的刚体系统动力学模拟. 力学与实践, 2015,37(4):488-491
    [30] ( Yang Liusong, Yao Wenli, Yue Rong. Simulation of body dynamics with optimization. Mechanics in Engineering, 2015,37(4):488-491 (in Chinese))
  • Related Articles

    [1]Qiao Nanxuan, Ma Tielin, Xue Pu, Long Hongrui, Fu Jingcheng. WAVERIDER FAIRING OPTIMIZATION INCORPORATING MULTI-SOURCE MODEL TIME COST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 578-592. DOI: 10.6052/0459-1879-24-580
    [2]Wang Gengxiang, Ma Daolin, Liu Yang, Liu Caishan. RESEARCH PROGRESS OF CONTACT FORCE MODELS IN THE COLLISION MECHANICS OF MULTIBODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3239-3266. DOI: 10.6052/0459-1879-22-266
    [3]Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
    [4]Liu Yanzhu. DYNAMIC MODELING OF MULTI-BODY SYSTEM BASED ON GAUSS'S PRINCIPLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 940-945. DOI: 10.6052/0459-1879-14-143
    [5]Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329
    [6]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [7]Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240
    [8]Zhan Kang, Yangjun Luo. On structural optimization for non-probabilistic reliability based on convex models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 807-815. DOI: 10.6052/0459-1879-2006-6-2005-629
    [9]A NEW METHOD OF MODELING MULTIBODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(5): 593-598. DOI: 10.6052/0459-1879-1994-5-1995-585
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(6)

    1. 林先晶,戴程浩,江维,彭思远,陈振. 基于ADAMS的纱筒换料抓取机械臂力学特性分析与仿真. 纺织工程学报. 2024(02): 28-39 .
    2. ZHANG Yi,XIA Junling. Gauss Principle of Least Compulsion for Relative Motion Dynamics and Differential Equations of Motion. Wuhan University Journal of Natural Sciences. 2024(03): 273-283 .
    3. 张毅,宋传静,翟相华. 变加速动力学系统的广义高斯最小拘束原理. 力学学报. 2023(05): 1174-1180 . 本站查看
    4. 张毅,陈欣雨. 变质量力学系统的广义高斯原理及其对高阶非完整系统的推广. 力学学报. 2022(10): 2883-2891 . 本站查看
    5. 祝世兴,杨丽昆,魏戬,祝恒佳. 基于改进Bingham模型的磁流变阻尼器力学建模及试验研究. 重庆理工大学学报(自然科学). 2021(04): 254-264 .
    6. 杨流松,姚文莉,薛世峰. 粒子群优化算法在具有奇异位置的多体系统动力学中的应用. 北京大学学报(自然科学版). 2021(05): 795-803 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1822) PDF downloads (210) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return