Processing math: 100%
EI、Scopus 收录
中文核心期刊
Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
Citation: Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067

DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS

  • Received Date: March 04, 2020
  • The effects of flexible joints on the dynamic response and control of robot are studied in this paper. Firstly, the spatial robot model consisting of n flexible joints and n flexible links is built, and the dynamic equations of the robot system are derived via the Lagrangian's equations. The tensile deformation, bending deformation, torsional deformation, and nonlinear coupling deformation of the flexible link are considered. Furthermore, the effects of the flexible joint are also considered in order to provide an important theoretical basis for the research of the vibration suppression and control of robots. The flexible joint is simplified as a linear torsion spring with damping, and the mass effect of the flexible joint is also considered in the model. Secondly, the dynamic simulations of the spatial manipulators are done to explore the effects of the joint stiffness and damping on the dynamic response of the robot system. The results show that as the stiffness coefficient increases, the amplitude of dynamic response of the flexible robot decreases, and the vibration frequency of the system becomes larger. As the damping coefficient increases, the dynamic response of the flexible robot decreases, and the dynamic response decays faster. The vibration of the flexible robot can be suppressed by adjusting the values of the stiffness and damping of the flexible joint. Finally, in order to study the effects of the flexibility of the joint on the control system, the rigid-joint manipulator and flexible-joint manipulator are made to move under the same circular motion. Then the joint torques of the two system are obtained respectively by solving the inverse dynamics equations, and the influence of the flexibility of the joint on the dynamics control is studied. The results show that the actuating torques required in the flexible-joint system are reduced compared to that required in the rigid-joint system.
  • [1] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述. 载人航天, 2015,21(5):435-443
    [1] ( Liu Hong, Jiang Zainan, Liu Yechao. Review of space manipulator technology. Manned Spaceflight, 2015,21(5):435-443 (in Chinese))
    [2] Likins PW. Finite element appendage equations for hybrid coordinate dynamic analysis. International Journal of Solids and Structures, 1972,8(5):709-731
    [3] Book WJ. Recursive Lagrangian dynamics of flexible manipulator arms via transformation matrices. The International Journal of Robotics Research, 1984,3(3):87-101
    [4] Zhang DG. Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms. Applied Mathematics and Mechanics, 2009,30(10):1283-1294
    [5] Yang H, Hong J, Yu Z. Dynamics modelling of a flexible hub-beam system with a tip mass. Journal of Sound and Vibration, 2003,266(4):759-774
    [6] 肖建强, 章定国. 空间运动体上梁的三维动力学建模和仿真. 空间科学学报, 2006, ( 3):227-234
    [6] ( Xiao Jianqiang, Zhang Dingguo. Three-dimensional dynamic modeling and simulation of a beam attached to a spatially moving base. Chinese Journal of Space Science, 2006, ( 3):227-234 (in Chinese))
    [7] 章定国, 余纪邦. 作大范围运动的柔性梁的动力学分析. 振动工程学报, 2006,19(4):475-480
    [7] ( Zhang Dingguo, Yu Jibang. Dynamical analysis of a flexible cantilever beam with large overall motions. Journal of Vibration Engineering, 2006,19(4):475-480 (in Chinese))
    [8] 吴胜宝, 章定国. 大范围运动刚体-柔性梁刚柔耦合动力学分析. 振动工程学报, 2011,24(1):1-7
    [8] ( Wu Shengbao, Zhang Dingguo. Rigid-flexible coupling dynamic analysis of hub-flexible beam with large overall motion. Journal of Vibration Engineering, 2011,24(1):1-7 (in Chinese))
    [9] 方建士, 章定国. 旋转悬臂梁的刚柔耦合动力学建模与频率分析. 计算力学学报, 2012,29(3):333-339
    [9] ( Fang Jianshi, Zhang dingguo. Rigid-flexible coupling dynamic modeling and frequency analysis of a rotating cantilever beam. Chinese Journal of Computational Mechanics, 2012,29(3):333-339 (in Chinese))
    [10] 陈思佳, 章定国, 洪嘉振. 大变形旋转柔性梁的一种高次刚柔耦合动力学模型. 力学学报, 2013,45(2):251-256
    [10] ( Chen Sijia, Zhang Dingguo, Hong Jiazhen. A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(2):251-256 (in Chinese))
    [11] 吴吉, 章定国, 黎亮 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147
    [11] ( Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
    [12] 范纪华, 章定国, 谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报, 2019,51(5):1455-1465
    [12] ( Fan Jihua, Zhang Dingguo, Shen Hong. Research on elastic line method based on absolute nodal coordinate method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1455-1465 (in Chinese))
    [13] 范纪华, 陈立威, 王明强 等. 旋转中心刚体—FGM梁刚柔热耦合动力学特性研究. 力学学报, 2019,51(6):1905-1917
    [13] ( Fan Jihua, Chen Liwei, Wang Mingqiang, et al. Research on dynamics of a rigid-flexible-thermal coupling rotating HUB-FGM beam. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1905-1917 (in Chinese))
    [14] Spong MW. Modeling and control of elastic joint robots. Journal of Dynamic Systems Measurement and Control, 1987,109(4):310-319
    [15] Bridges MM, Dawson DM. Redesign of robust controllers for rigid-link flexible-joint robotic manipulators actuated with harmonic drive gearing. IEE Proceedings-Control Theory and Applications, 1995,142(5):508-514
    [16] 章定国, 周胜丰. 柔性杆柔性铰机器人动力学分析. 应用数学和力学, 2006,27(5):615-623
    [16] ( Zhang Dingguo, Zhou Shengfeng. Dynamic analysis of flexible-link and flexible-joint robots. Applied Mathematics and Mechanics, 2006,27(5):615-623 (in Chinese))
    [17] 刘俊. 柔性杆柔性铰机器人刚柔耦合动力学. [硕士论文]. 南京: 南京理工大学, 2006
    [17] ( Liu Jun. Researches on the rigid-flexible coupling problem of flexible-link and flexible-joint robots. [Master Thesis]. Nanjing: Nanjing University of Science and Technology, 2006 (in Chinese))
    [18] 范纪华, 章定国, 谌宏 等. 考虑关节柔性的机器人动力学分析与仿真. 计算机仿真, 2017,34(8):331-336
    [18] ( Fan Jihua, Zhang Dingguo, Shen Hong, et al. Dynamic simulation and analysis of manipulator considering flexible joint. Computer Simulation, 2017,34(8):331-336 (in Chinese))
    [19] Xi F, Fenton RG. Coupling effect of a flexible link and a flexible joint. The International Journal of Robotics Research, 1994,13(5):443-453
    [20] 边宇枢, 陆震. 柔性机器人动力学建模的一种方法. 北京航空航天大学学报, 1999,25(4):486-490
    [21] Al-Bedoor BO, Almusallam AA. Dynamics of flexible-link and flexible-joint manipulator carrying a payload with rotary inertia. Mechanism and Mach Theory, 2000,35:785-820
    [22] Zhang DG, Zhou SF. Dynamics of flexible-link and flexible-joint robots. Applied Mathematics and Mechanics, 2006,26(5):695-704
    [23] Qian ZJ, Zhang DG, Liu J. Recursive formulation for dynamic modeling and simulation of multilink spatial flexible robotic manipulators. Advances in Mechanical Engineering, 2013: 216014-1-15
    [24] 陈思佳, 章定国. 带有载荷的柔性杆柔性铰机器人刚柔耦合动力学分析. 南京理工大学学报, 2012,36(1):182-188
    [24] ( Chen Sijia, Zhang Dingguo. Rigid-flexible coupling dynamics of flexible-link and flexible-joint robots carrying payload. Journal of Nanjing University of Science & Technology, 2012,36(1):182-188 (in Chinese))
    [25] Rong B, Rui XT, Tao L, et al. Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dynamics, 2019,98(2):1519-1553
    [26] Guo X, Zhang DG, Li L, et al. Application of the two-loop procedure in multibody dynamics with contact and constraint. Journal of Sound and Vibration, 2018,427:15-27
    [27] Guaraci B. Analysis of stable model inversion methods for constrained underactuated mechanical systems. Mechanism and Machine Theory, 2017,111:99-117
    [28] Krzysztf P. Inverse dynamics and feedforward controllers for high precision position/force tracking of flexible joints robots. Robotica, 1994,12:227-241
    [29] Jankowski KP, Van Brussel H. An approach to discrete inverse dynamics control of flexible-joint robot. IEEE Transactions of Robotic and Automation, 1992 8(5):651-658
  • Related Articles

    [1]Wang Rong, Liu Haojun, Liu Jianing, Wu Ying. STIFFNESS AND DAMPING FEATURES OF BRAIN COMPLEX NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3002-3011. DOI: 10.6052/0459-1879-24-176
    [2]Zhang Wanjie, Niu Jiangchuan, Shen Yongjun, Yang Shaopu, Wang Li. DYNAMICAL ANALYSIS ON A KIND OF SEMI-ACTIVE VIBRATION ISOLATION SYSTEMS WITH DAMPING CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1743-1754. DOI: 10.6052/0459-1879-20-147
    [3]Shen Tao, Zhang Chongfeng, Wang Weijun, Feng Wenbo, Qiu Huayong. DYNAMIC SIMULATION ANALYSIS OF CAPTURE AND BUFFER SYSTEM BASED ON CLAW-TYPE DOCKING MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1590-1598. DOI: 10.6052/0459-1879-20-108
    [4]Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
    [5]Hongnan Li, Jun Li, Gangbing Song. Improved suboptimal Bang-Bang control of aseismic buildings with variable friction dampers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 101-109. DOI: 10.6052/0459-1879-2007-1-2005-601
    [6]Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431
    [7]A DYNAMIC CONTROL MODEL OF PIEZOELECTRIC CANTILEVERED BEAM-PLATE BASED ON WAVELET THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(6): 719-727. DOI: 10.6052/0459-1879-1998-6-1995-182
    [8]A TIME DOMAIN BOUNDARY ELEMENT METHOD FOR SYSTEMS WITH DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 627-630. DOI: 10.6052/0459-1879-1997-5-1995-276
    [9]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(5)

    1. 李鑫,唐贞云,杜修力. 半无限介质多自由度频响函数离散时间有理近似的稳定参数识别. 工程力学. 2024(08): 1-10 .
    2. 孟想,赵晔. 基于微波反射法的配电网电缆线路绝缘在线检测. 能源与环保. 2022(05): 204-209 .
    3. 吴利华,赵密,杜修力. 多层波导中矢量波动的时域人工边界条件. 力学学报. 2021(02): 554-567 . 本站查看
    4. 邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 波动数值模拟中的外推型人工边界条件. 力学学报. 2021(05): 1480-1495 . 本站查看
    5. 孔曦骏,邢浩洁,李鸿晶,周正华. 多次透射公式飘移问题的控制方法. 力学学报. 2021(11): 3097-3109 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (2371) PDF downloads (385) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return