EI、Scopus 收录
中文核心期刊
An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035
Citation: An Xinlei, Zhang Li. MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1174-1188. DOI: 10.6052/0459-1879-20-035

MULTI-MODE OSCILLATIONS AND HAMILTON ENERGY FEEDBACK CONTROL OF A CLASS OF MEMRISTOR NEURON

  • Received Date: February 10, 2020
  • According to Faraday's electromagnetic induction law, the electrophysiological environment in and out the cell will produce electromagnetic induction effects in the case of ions penetrating the cell membrane or in the case of being exposed to external electromagnetic radiation, which will affect the electrical activity behavior of neural systems. Based on this principle, this paper studies the mixed-mode oscillation discharge characteristics of the Hindmarsh-Rose(HR) neuron model (here we call it as magnetic flux HR neuron model) with the influence of electromagnetic induction, and designs a Hamilton energy feedback controller to manage the mode to different periodic cluster discharge states. First, through theoretic analysis, it is found that the stability of equilibrium point in the magnetic flux HR neuron model is changed by the occurrence of Hopf bifurcation in the magnetic flux HR neuron model and a limit cycle is generated. Besides, some discharge characteristics of the membrane voltage near the Hopf bifurcation point are also discussed in detail. Then, it is also displayed there are abundant bifurcation structures in the magnetic flux HR neuron model based on the two-parameter numerical simulations, which includes multi-period bifurcation, period-adding bifurcation with chaos, period-adding bifurcation without chaos and co-existing mixed-mode oscillations in different initial conditions. At last, with the purpose of controlling the mixed-mode oscillation of membrane voltage, the Hamilton energy function is calculated by utilizing the Helmholtz theorem, and a Hamilton energy feedback controller is designed further. Additionally, it can be seen that the controller can effectively control the membrane voltage in different periodic clustering discharge modes, with the analysis of the discharge states of membrane voltage under different feedback gains in view of the numerical simulation. The results of this paper provide a useful theoretical support for the study of bifurcation structure in artificial neuron system under electromagnetic induction and the field of energy control related to the neurons.
  • [1] Rabinovich MI, Varona P, Selverston AI, et al. Dynamical principles in neuroscience. Reviews of Modern Physics, 2006,78(4):1213-1265
    [2] Ryashko L, Slepukhina E. Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, 2017,96(3):032212
    [3] Medvedeva TM, Sysoeva MV, van Luijtelaar G, et al. Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Networks, 2018,98:271-282
    [4] Xia YH, Mateja G, Huang WT, et al. Limit cycles in a model of olfactory sensory neurons. International Journal of Bifurcation and Chaos, 2019,29(3):1950038
    [5] 古华光. 神经系统信息处理和异常功能的复杂动力学. 力学学报, 2017,49(2):410-420
    [5] ( Gu Huaguang. Complex dynamics of the nervous synchronization for information processing and abnormal functions. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):410-420 (in Chinese))
    [6] 曹金凤, 韩芳. 考虑树突整合效应的神经元网络的放电和同步特性. 动力学与控制学报, 2019,17(5):560-566
    [6] ( Cao Jinfeng, Han Fang. Firing and synchronization characteristics of neuronal networks considering dendritic integration effect. Journal of dynamics and control, 2019,17(5):560-566 (in Chinese))
    [7] 李佳佳, 吴莹, 独盟盟 等. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, 2015,64(3):030503
    [7] ( Li Jiajia, Wu Ying, Du Mengmeng, et al. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, 2015,64(3):030503 (in Chinese))
    [8] Feibiao Z, Shenquan L. Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Frontiers in Computational Neuroscience, 2017,11:107-114
    [9] Ma J, Tang J. A review for dynamics of collective behaviors of network of neurons. Science China Technological Sciences, 2015,58(12):2038-2045
    [10] Lü M, Wang CN, Ren GD, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016,85:1479-1490
    [11] Xu Y, Jia Y, Ma J, et al. Collective responses in electrical activities of neurons under field coupling. Scientific Reports, 2018,8:1349
    [12] 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔. 物理学报, 2016,65(21):210502
    [12] ( Ding Xueli, Li Yuye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica sinica, 2016,65(21):210502 (in Chinese))
    [13] Chen CJ, Chen JQ, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dynamics, 2019,95(4):3385-3399
    [14] Bao H, Hu AH, Liu WB, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(2):502-511
    [15] 杨仪. Hindmarsh-Rose神经元模型的分岔与控制. [博士论文]. 重庆: 西南大学, 2018
    [15] ( Yang Yi. Bifurcation and control of Hindmarsh-Rose neuronal model. [PhD Thesis]. Chongqing: Southwest University, 2018 (in Chinese))
    [16] 汪净. 神经元模型的放电特性与相位同步现象. [博士论文]. 广东: 华南理工大学, 2018
    [16] ( Wang Jing. Discharge characteristics and phase synchronization phenomena of neuron modes. [PhD Thesis]. Guangdong: South China University of Technology, 2018 (in Chinese))
    [17] 陆博, 刘深泉, 刘宣亮. 神经元模型中混合模式振荡动力学研究进展. 动力学与控制学报, 2016,14(5):481-491
    [17] ( Lu Bo, Liu Shenquan, Liu Xuanliang. Research development on dynamics of mixed-mode oscillations in neuronal models. Journal of dynamics and control, 2016,14(5):481-491 (in Chinese))
    [18] 于浩, 肖晗, 司芳源 等. 磁流对神经元 Chay 模型放电模式的影响. 生物物理学, 2017,5(1):1-7
    [18] ( Yu Hao, Xiao Hao, Si Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect. Biophysics, 2017,5(1):1-7 (in Chinese))
    [19] Wu FQ, Tasawar H, An XL, et al. Can Hamilton energy feedback suppress the chameleon chaotic flow. Nonlinear Dynamics, 2018,94(1):669-677
    [20] Usha K, Subha PA. Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chinese Physics B, 2019,28(2):20502-020502
    [21] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016,65(24):240501
    [21] ( Wang Chunni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016,65(24):240501 (in Chinese))
    [22] Li F, Yao CG. The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dynamics, 2016,84(4):2305-2315
    [23] An XL, Zhang L. Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dynamics, 2018,94(2):2995-3010
    [24] Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London Series B, 1984,221:87-102
    [25] Hassard B, Kazarinoff N, Wan YH. Theory and Application of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981: 306-319
    [26] Kingston SL, Thamilmaran K. Bursting oscillations and mixed-mode oscillations in driven Liénard system. International Journal of Bifurcation and Chaos, 2017,27(7):25-37
    [27] Torrealdea FJ, d'Anjou A, Gra?a M. Energy aspects of the synchronization of model neurons. Physical Review E, 2006,74:011905
    [28] Wang Y, Wang CN, Ren GD. Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dynamics, 2017,89:1967-1987
    [29] 王如彬, 张志康. 基于信息编码的神经能量计算. 力学学报, 2012,44(4):779-786
    [29] ( Wang Rubin, Zhang Zhikang. Computation of neuronal energy based on information coding. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):779-786 (in Chinese))
    [30] 彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码. 力学学报, 2019,51(4):1202-1209
    [30] ( Peng Jun, Wang Rubin, Wang Yihong. Energy coding of hemodynamic phenomena in the brain. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1202-1209 (in Chinese))
  • Related Articles

    [1]Hua Hongtao, Gu Huaguang. INHIBITORY STIMULATION WITH HIGH FREQUENCY INDUCES MIXED-MODE BURSTING: COOPERATION BETWEEN DIFFERENT DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-14. DOI: 10.6052/0459-1879-25-022
    [2]Hu Yinggang, Jiang Yanqun, Huang Xiaoqian. HIGH ORDER WEIGHT COMPACR NONLINEAR SCHEME FOR TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3203-3214. DOI: 10.6052/0459-1879-22-233
    [3]Qian Youhua, Chen Yani. BURSTING OSCILLATIONS AND ENERGY HARVESTING EFFICIENCY ANALYSIS OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168. DOI: 10.6052/0459-1879-22-298
    [4]Ji Wenchao, Duan Lixia, Qi Huiru. BIFURCATION MECHANISM OF MIXED BURSTING IN NEURON MODEL UNDER THE ELECTROMAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1733-1746. DOI: 10.6052/0459-1879-21-071
    [5]Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NON-SMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOV-TYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155. DOI: 10.6052/0459-1879-18-136
    [6]zhang xiaofang bi qinsheng. Bursting phenomena as well as the bifurcation mechanism in periodically excited hartley model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773. DOI: 10.6052/0459-1879-2010-4-lxxb2009-614
    [7]Zhi Li. Hamiltonian formulation of axisymmetrical liquid jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 449-454. DOI: 10.6052/0459-1879-2007-4-2005-508
    [8]THE CANONICAL HAMILTONIAN REPRESENTATIONS IN A CLASS OF PARTIAL DIFFERENTIAL EQUATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 347-357. DOI: 10.6052/0459-1879-1999-3-1995-040
    [9]AN ADAPTIVE CONTROL STRATEGY FOR DIRECTING CHAOTIC MOTION TO PERIODIC MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 631-635. DOI: 10.6052/0459-1879-1997-5-1995-277
    [10]THE CANONICAL HAMILTONIAN REPRESENTATIONS IN SOLID MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 119-125. DOI: 10.6052/0459-1879-1996-1-1995-311
  • Cited by

    Periodical cited type(9)

    1. 刘畅. 电磁下耦合Chay神经元模型的放电及同步. 数学的实践与认识. 2024(08): 248-256 .
    2. 薛睿,张莉,安新磊,李雯. 电磁场作用下HR神经元模型的分岔分析及哈密顿能量控制. 四川大学学报(自然科学版). 2024(06): 159-167 .
    3. 安新磊,熊丽,乔帅. 电磁驱动下一类混合神经元模型的动力学响应与图像加密应用. 电子与信息学报. 2023(03): 929-940 .
    4. 任雁澜,乔帅,安新磊. 基于阈值控制策略的Filippov神经元模型的动力学及多稳态分析. 云南大学学报(自然科学版). 2023(04): 855-865 .
    5. 肖冉,安新磊,祁慧敏,乔帅. 电场作用下HR神经元的分岔分析及参数辨识. 浙江大学学报(理学版). 2022(06): 691-697+705 .
    6. 唐利红,贺宗梅,姚延立. 具有隐藏超级多稳定性的磁感应HR神经元及其电路实现. 计算物理. 2022(05): 589-597 .
    7. 安新磊,乔帅,张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报. 2021(05): 46-65 .
    8. 张薇,安新磊,王红梅,乔帅. mHR神经元模型的分岔分析及其哈密顿能量控制. 云南大学学报(自然科学版). 2021(03): 486-494 .
    9. 祁慧敏,张莉,安新磊,乔帅,肖冉. 电磁感应下一类新皮层神经元的放电及同步. 山东大学学报(理学版). 2021(05): 1-11 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (1835) PDF downloads (115) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return