[1] | Rabinovich MI, Varona P, Selverston AI, et al. Dynamical principles in neuroscience. Reviews of Modern Physics, 2006,78(4):1213-1265 | [2] | Ryashko L, Slepukhina E. Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model. Physical Review E, 2017,96(3):032212 | [3] | Medvedeva TM, Sysoeva MV, van Luijtelaar G, et al. Modeling spike-wave discharges by a complex network of neuronal oscillators. Neural Networks, 2018,98:271-282 | [4] | Xia YH, Mateja G, Huang WT, et al. Limit cycles in a model of olfactory sensory neurons. International Journal of Bifurcation and Chaos, 2019,29(3):1950038 | [5] | 古华光. 神经系统信息处理和异常功能的复杂动力学. 力学学报, 2017,49(2):410-420 | [5] | ( Gu Huaguang. Complex dynamics of the nervous synchronization for information processing and abnormal functions. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):410-420 (in Chinese)) | [6] | 曹金凤, 韩芳. 考虑树突整合效应的神经元网络的放电和同步特性. 动力学与控制学报, 2019,17(5):560-566 | [6] | ( Cao Jinfeng, Han Fang. Firing and synchronization characteristics of neuronal networks considering dendritic integration effect. Journal of dynamics and control, 2019,17(5):560-566 (in Chinese)) | [7] | 李佳佳, 吴莹, 独盟盟 等. 电磁辐射诱发神经元放电节律转迁的动力学行为研究. 物理学报, 2015,64(3):030503 | [7] | ( Li Jiajia, Wu Ying, Du Mengmeng, et al. Dynamic behavior in firing rhythm transitions of neurons under electromagnetic radiation. Acta Physica Sinica, 2015,64(3):030503 (in Chinese)) | [8] | Feibiao Z, Shenquan L. Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Frontiers in Computational Neuroscience, 2017,11:107-114 | [9] | Ma J, Tang J. A review for dynamics of collective behaviors of network of neurons. Science China Technological Sciences, 2015,58(12):2038-2045 | [10] | Lü M, Wang CN, Ren GD, et al. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 2016,85:1479-1490 | [11] | Xu Y, Jia Y, Ma J, et al. Collective responses in electrical activities of neurons under field coupling. Scientific Reports, 2018,8:1349 | [12] | 丁学利, 李玉叶. 具有时滞的抑制性自突触诱发的神经放电的加周期分岔. 物理学报, 2016,65(21):210502 | [12] | ( Ding Xueli, Li Yuye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica sinica, 2016,65(21):210502 (in Chinese)) | [13] | Chen CJ, Chen JQ, Bao H, et al. Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dynamics, 2019,95(4):3385-3399 | [14] | Bao H, Hu AH, Liu WB, et al. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems, 2020,31(2):502-511 | [15] | 杨仪. Hindmarsh-Rose神经元模型的分岔与控制. [博士论文]. 重庆: 西南大学, 2018 | [15] | ( Yang Yi. Bifurcation and control of Hindmarsh-Rose neuronal model. [PhD Thesis]. Chongqing: Southwest University, 2018 (in Chinese)) | [16] | 汪净. 神经元模型的放电特性与相位同步现象. [博士论文]. 广东: 华南理工大学, 2018 | [16] | ( Wang Jing. Discharge characteristics and phase synchronization phenomena of neuron modes. [PhD Thesis]. Guangdong: South China University of Technology, 2018 (in Chinese)) | [17] | 陆博, 刘深泉, 刘宣亮. 神经元模型中混合模式振荡动力学研究进展. 动力学与控制学报, 2016,14(5):481-491 | [17] | ( Lu Bo, Liu Shenquan, Liu Xuanliang. Research development on dynamics of mixed-mode oscillations in neuronal models. Journal of dynamics and control, 2016,14(5):481-491 (in Chinese)) | [18] | 于浩, 肖晗, 司芳源 等. 磁流对神经元 Chay 模型放电模式的影响. 生物物理学, 2017,5(1):1-7 | [18] | ( Yu Hao, Xiao Hao, Si Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect. Biophysics, 2017,5(1):1-7 (in Chinese)) | [19] | Wu FQ, Tasawar H, An XL, et al. Can Hamilton energy feedback suppress the chameleon chaotic flow. Nonlinear Dynamics, 2018,94(1):669-677 | [20] | Usha K, Subha PA. Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chinese Physics B, 2019,28(2):20502-020502 | [21] | 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016,65(24):240501 | [21] | ( Wang Chunni, Wang Ya, Ma Jun. Calculation of Hamilton energy function of dynamical system by using Helmholtz theorem. Acta Physica Sinica, 2016,65(24):240501 (in Chinese)) | [22] | Li F, Yao CG. The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dynamics, 2016,84(4):2305-2315 | [23] | An XL, Zhang L. Dynamics analysis and Hamilton energy control of a generalized Lorenz system with hidden attractor. Nonlinear Dynamics, 2018,94(2):2995-3010 | [24] | Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London Series B, 1984,221:87-102 | [25] | Hassard B, Kazarinoff N, Wan YH. Theory and Application of Hopf Bifurcation. Cambridge: Cambridge University Press, 1981: 306-319 | [26] | Kingston SL, Thamilmaran K. Bursting oscillations and mixed-mode oscillations in driven Liénard system. International Journal of Bifurcation and Chaos, 2017,27(7):25-37 | [27] | Torrealdea FJ, d'Anjou A, Gra?a M. Energy aspects of the synchronization of model neurons. Physical Review E, 2006,74:011905 | [28] | Wang Y, Wang CN, Ren GD. Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dynamics, 2017,89:1967-1987 | [29] | 王如彬, 张志康. 基于信息编码的神经能量计算. 力学学报, 2012,44(4):779-786 | [29] | ( Wang Rubin, Zhang Zhikang. Computation of neuronal energy based on information coding. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(4):779-786 (in Chinese)) | [30] | 彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码. 力学学报, 2019,51(4):1202-1209 | [30] | ( Peng Jun, Wang Rubin, Wang Yihong. Energy coding of hemodynamic phenomena in the brain. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1202-1209 (in Chinese)) |
|