EI、Scopus 收录
中文核心期刊
Wang Li'an, Zhao Jianchang, Wang Zuowei. ANALYTICAL STUDY ON GROUND VIBRATION INDUCED BY MOVING VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1509-1518. DOI: 10.6052/0459-1879-20-033
Citation: Wang Li'an, Zhao Jianchang, Wang Zuowei. ANALYTICAL STUDY ON GROUND VIBRATION INDUCED BY MOVING VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1509-1518. DOI: 10.6052/0459-1879-20-033

ANALYTICAL STUDY ON GROUND VIBRATION INDUCED BY MOVING VEHICLE

  • Received Date: February 09, 2020
  • Based on vehicle dynamics, the coupling vibration model between vehicle and ground is established, and the contact model of elastic roller is adopted to reflect the tyre tolerance. At the same time, the longitudinal and vertical forces between the wheel and the ground are considered, the system dynamic control equation is constructed, and the analytical solution of the surface vibration displacement is obtained by using Fourier and Laplace integral transformation. In the numerical example, the inverse discrete Fourier transform and Crump's method are used to do the numerical inversion, and the time domain solution of the surface vibration displacement is obtained, the influence of the parameters of the surface vibration displacement is analyzed. The results show that the surface irregularity has the most significant influence on the wheel-earth interaction, and the more uneven the ground, the greater the wheel-earth interaction and the greater the surface vibration displacement. The influence of vehicle speed on the wheel-ground force is limited, but it has a great influence on the excitation frequency of load. When vehicle speed increases, the excitation frequency increases, and the surface vibration displacement increases accordingly. At a low speed, tire inclusivity has a certain effect on the wheel-ground force and surface vibration. With the increase of tire inflation pressure, the wheel-ground force and surface vibration displacement increase, but with the increase of speed, this effect will gradually disappear.
  • [1] Ren X, Wu J, Tang Y. Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains. Soil Dynamics and Earthquake Engineering, 2019,117:374-383
    [2] Roshan KM, Murty DS. Quantification of ground-vibrations generated by high speed trains in ballasted railway tracks. Transportation Geotechnics, 2019,20:10-24
    [3] Alexandros L, Yiannis T, Prodromos N. Efficient mitigation of high-speed trains induced vibrations of railway embankments using expanded polystyrene blocks. Transportation Geotechnics, 2020,22:3-12
    [4] 边学成, 陈云敏. 列车载荷作用下轨道和地基的动响应分析. 力学学报, 2005,37(4):477-484
    [4] ( Bian Xuecheng, Chen Yunmin. Dynamic response analysis of track and foundation under train load. Chinese Journal of Theoretical and Applied Mechanics, 2005,37(4):477-484 (in Chinese))
    [5] 郭林生, 文永蓬, 尚慧琳 等. 考虑车下设备的城轨车辆弹性车体垂向振动特性研究. 振动与冲击, 2019,38(21):97-103
    [5] ( Guo Linsheng, Wen Yongpeng, Shang Huilin, et al. Vertical vibration characteristics of urban rail elastic vehicle body with under-vehicle equipment. Journal of Vibration and Shock, 2019,38(21):97-103 (in Chinese))
    [6] 崔高航, 欧阳浩然, 陶夏新 等. 城轨沿线地面环境振动响应的半解析有限元求解. 振动与冲击, 2019,38(15):109-114
    [6] ( Cui Gaohang, Ouyang Haoran, Tao Xiaxin, et al. Semi-analytical finite element method for ground environment vibration responses along urban rail. Journal of Vibration and Shock, 2019,38(15):109-114 (in Chinese))
    [7] Cai YQ, Sun HL, Xu CJ. Steady state responses of poroelastic half-space soil medium to a moving rectangular load. International Journal of Solids and Structures, 2007,44(22):7183-7196
    [8] 周华飞, 蒋建群. 高速移动载荷下黏弹性半空间体的动力响应. 力学学报, 2007,39(4):545-553
    [8] ( Zhou Huafei, Jiang Jianqiong. Dynamic response of viscoelastic half-space body under high-speed moving loads. Chinese Journal of Theoretical and Applied Mechanics, 2007,39(4):545-553 (in Chinese))
    [9] 曹志刚, 孙思, 袁宗浩 等. 地表移动载荷对既有地下隧洞动力影响解析研究. 岩土工程学报, 2018,40(12):2262-2273
    [9] ( Cao Zhigang, Sun Si, Yuan Zonghao, et al. An analytical study on the dynamic effects of surface moving loads on existing subsurface tunnels. Chinese Journal of Geotechnical Engineering, 2018,40(12):2262-2273 (in Chinese))
    [10] 王立安, 赵建昌, 侯小强 等. 非均匀饱和半空间的 Lamb 问题. 岩土力学, 2020,41(5):1-9
    [10] ( Wang Lian, Zhao Jianchang, Hou Xiaoqiang, et al. Lamb problem for non-homogeneous saturated half space. Rock and Soil Mechanics, 2020,41(5):1-9 (in Chinese))
    [11] Fryba L. Dynamic interaction of vehicles with trucks and roads. Vehicle System Dynamics, 1987,16:129-138
    [12] 孙璐, 邓学均. 速度与车辆动态特性对于车路相互作用的影响. 土木工程学报, 1997,30(34):40-48
    [12] ( Sun Lu, Deng Xuejun. The influence of velocity and vehicle dynamic characteristics on vehicle-road interaction. China Civil Engineering Journal, 1997,30(34):40-48 (in Chinese))
    [13] 孙璐, 邓学均. 移动的车辆随机载荷作用下梁桥的瞬态响应. 振动与冲击, 1997,16(1):62-68
    [13] ( Sun Lu, Deng Xuejun. Transient response of girder bridges under random load of moving vehicles. Journal of Vibration and Shock, 1997,16(1):62-68 (in Chinese))
    [14] 黄新艺, 卓卫东, 魏祥湘. 移动车辆作用对公路连续梁桥地震反应特性的影响. 振动与冲击, 2019,30(5):837-848
    [14] ( Huang Xinyi, Zhuo Weidong, Wei Xiangxiang. The influence of moving vehicles on the seismic response characteristics of highway continuous girder bridge. Journal of Vibration and Shock, 2019,30(5):837-848 (in Chinese))
    [15] Cai YQ, Chen Y, Cao Z. Dynamic responses of a saturated poroelastic half-space generated by a moving truck on the uneven pavement. Soil Dynamics and Earthquake Engineering, 2015,69:172-181
    [16] Liu HB, Kim D. Simulating the uncertain environmental impact of freight truck shifting programs. Atmospheric Environment, 2019,214(1):8-16
    [17] Cyriaque AO, Tan YQ, Zhou XY. Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect. Construction and Building Materials, 2020,235(28):135-147
    [18] Zhi L, Qian J, Shi Z, et al. Dynamic responses of layered poroelastic ground under moving traffic loads considering effects of pavement roughness. Soil Dynamics and Earthquake Engineering, 2020,130:1-13
    [19] 陈瑶, 蔡袁强, 曹志刚 等. 不平顺路面对交通载荷引起的地基振动影响. 浙江大学学报(工学版), 2019,53(56):1031-1039
    [19] ( Chen Yao, Cai Yuanqiang, Cao Zhigang, et al. The uneven road is affected by the vibration of foundation caused by traffic load. Journal of Zhejiang University (Engineering Science), 2019,53(56):1031-1039 (in Chinese))
    [20] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [20] ( Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [21] Guo KH. Tire roller contact model for simulation of vehicle vibration input. SAE Technical Papers, 1993,932008
    [22] 郭孔辉, 刘青, 丁国峰. 轮胎包容特性分析及其在汽车振动系统建模中的应用. 汽车工程, 1999,21(2):65-71
    [22] ( Guo Konghui, Liu Qing, Ding Guofeng. Analysis of tire inclusion characteristics and its application in automobile vibration system modeling. Automotive Engineering, 1999,21(2):65-71 (in Chinese))
    [23] 郭孔辉, 杨一洋. 轮胎力学特性试验台的运动学分析. 机械工程学报, 2013,49(20):63-70
    [23] ( Guo Konghui, Yang Yiyang. Kinematic analysis of tire mechanical characteristics test bench. Journal of Mechanical Engineering, 2013,49(20):63-70 (in Chinese))
    [24] 郭孔辉. 汽车操纵动力学. 长春: 吉林科学技术出版社, 1991
    [24] ( Guo Konghui. Vehicle steering dynamics. Changchun: Jilin Science and Technology Press, 1991)
    [25] 胡海岩. 论力学系统的自由度. 力学学报, 2018,50(5):1135-1144
    [25] ( Hu Haiyan. On the degrees of freedom of a mechanical system. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1135-1144 (in Chinese))
    [26] 刘志浩, 高钦和. 考虑充气压力效应的重载轮胎面内振动模态建模及参数辨识. 振动与冲击, 2018,37(18):184-192
    [26] ( Liu Zhihao, Gao Qinhe. Modeling and parameter identification of vibration modes in heavy duty tires considering the effect of air pressure. Journal of Vibration and Shock, 2018,37(18):837-848 (in Chinese))
    [27] 刘志浩, 高钦和, 于传强 等. 重载轮胎面内欧拉梁模型及耦合振动特性研究. 振动工程学报, 2019,32(1):107-119
    [27] ( Liu Zhihao, Gao Qin, Yu Chuanqiang, et al. Study on the model of euler beam and coupling vibration characteristics of heavy duty tire. Journal of Vibration and Shock, 2019,32(1):107-119 (in Chinese))
    [28] 范纪华, 章定国, 谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报, 2019,51(5):1455-1465
    [28] ( Fan Jihua, Zhang Dingguo, Shen Hong. Research on elastic line method based on absolute nodal coordinate method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1455-1465 (in Chinese))
    [29] 叶茂, 任珉, 谭平 等. 城市道路交通诱发建筑结构振动的实测和数值模拟. 应用力学学报, 2013,30(3):463-468
    [29] ( Ye Mao, Ren Min, Tan Ping, et al. Measurement and numerical simulation of building structure-induced vibration of urban road traffic. Chinese Journal of Applied Mechanics, 2013,30(3):463-468 (in Chinese))
    [30] 贾宝印, 楼梦麟, 宗刚 等. 车辆载荷引起地面振动的实测研究. 振动与冲击, 2013,32(4):10-14
    [30] ( Jia Baoyin, Lou Menglin, Zong Gang, et al. Field measurements for ground vibration induced by vehicle. Journal of vibration and Shock, 2013,32(4) : 10-14 (in Chinese))
    [31] Thomas D. 车辆动力学基础. 赵六奇译. 北京: 清华大学出版社, 2006
    [31] ( Thomas D. Fundamentals of Vehicle Dynamics. Zhao Liuqi (translated). Beijin: Tsinghua University Press, 2006 (in Chinese))
    [32] 季学武, 高义民, 裘熙定. 轮胎动刚度和阻尼特性的研究. 汽车工程, 1994,16(5):315-321
    [32] ( Ji Xuewu, Gao Yimin, Qiu Xiding. Research on dynamic stiffness and damping characteristics of tire. AutomotiveEngineering, 1994,16(5):315-321 (in Chinese))
    [33] 聂信天, 史立新, 顾浩 等. 农用轮胎径向刚度和阻尼系数试验研究. 南京农业大学学报, 2011,34(5):139-143
    [33] ( Nie Xinting, Shi Lixin, Gu Hao, et al. Research on the radial stiffness and damping of tractor coefficient tires through test. Journal of Nanjing Agricultural University, 2011,34(5):139-143 (in Chinese))
    [34] 何光渝, 王卫红. 精确的拉普拉斯数值反演方法及其应用. 石油学报, 1995,16(1):96-104
    [34] ( He Guangyu, Wang Weihong. Precise Laplace numerical inversion method and its application. Acta Petrolei Sinica, 1995,16(1):96-104 (in Chinese))
    [35] 谢伟平, 王国波, 于艳丽. 移动载荷引起的土变形计算. 岩土工程学报, 2004,26(3):318-322
    [35] ( Xie Weiping, Wang Guobo, Yu Yanli. Calculation of soil deformation induced by moving load. Chinese Journal of Geotechnical Engineering, 2004,26(3):318-322 (in Chinese))
  • Related Articles

    [1]Zhao Xiang, Yuan Mingze, Fang Shitong, Li Yinghui. PIEZOELECTRIC VIBRATION ENERGY HARVESTERS AND DYNAMIC ANALYSIS BASED ON THE SPINNING BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2228-2238. DOI: 10.6052/0459-1879-23-328
    [2]Yao Yangping, Tang Kesong. ISOTROPICALLY TRANSFORMED STRESS METHOD FOR THE ANISOTROPY OF SOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1651-1659. DOI: 10.6052/0459-1879-21-651
    [3]Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
    [4]He Yanli, Zhao Xiang. CLOSED-FORM SOLUTIONS FOR FORCED VIBRATIONS OF CURVED PIEZOELECTRIC ENERGY HARVESTERS BY MEANS OF GREEN'S FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1170-1179. DOI: 10.6052/0459-1879-19-007
    [5]Wan Zheng, Qiu Rendong, Guo Jinxue. A KIND OF STRENGTH AND YIELD CRITERION FOR GEOMATERIALS AND ITS TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 726-740. DOI: 10.6052/0459-1879-16-297
    [6]Liu Fushou, Jin Dongping. EQUIVALENT CIRCULAR RING MODEL FOR THE RADIAL VIBRATION ANALYSIS OF HOOP TRUSS STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1184-1191. DOI: 10.6052/0459-1879-16-076
    [7]Zheng Yuxuan, Chen Liang, Zhou Fenghua, Wang Lili. USING LAPLACE TRANSFORM TO SOLVE THE VISCOELASTIC WAVE PROBLEMS IN THE SHPB EXPERIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 843-852. DOI: 10.6052/0459-1879-14-002
    [8]Fan Peng, Yaojun Chen, Yifan Liu, Yiming Fu. Numerical inversion of Laplace transfors in viscoelastic problems by Fourier series expansion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 215-221. DOI: 10.6052/0459-1879-2008-2-2007-142
    [10]ELASTIC/VISCOPLASTIC SOLUTION OF TWISTY COLUMNS BY MEANS OF LAPLACE FUNCTIONAL TRANSFORMAIIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 434-439. DOI: 10.6052/0459-1879-1995-4-1995-451
  • Cited by

    Periodical cited type(12)

    1. 刘君,王立安,郭锋. 饱和黏土地基中桩基水平振动的时域半解析法研究. 振动与冲击. 2024(13): 90-97 .
    2. 杨松立,魏亚,叶周景,杨海露,杨碧宇,李鹏鹏,汪林兵. 车辆荷载激励下的水泥混凝土路面振动信号时频能量解析及车速估算. 中国公路学报. 2024(12): 310-325 .
    3. 王震强,李奎奎,汪过兵. 摩擦效应影响下矩形移动载荷作用对地面的动力响应分析. 力学与实践. 2024(06): 1242-1250 .
    4. 罗晨晖,麻友良. 基于路面平整度模拟的汽车行驶振动感应研究. 计算机仿真. 2023(02): 172-176 .
    5. 杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙. 浙江大学学报(工学版). 2023(07): 1410-1417 .
    6. 李奎奎,赵建昌,王立安. 矩形移动荷载作用下饱和-非饱和土双层地基的动力响应分析. 力学与实践. 2022(01): 131-137 .
    7. 王立安,余云燕. 振动压路机作业引起地基振动的解析法研究. 振动与冲击. 2022(04): 48-54 .
    8. 霍卫安. 冲孔桩施工引起周围地表振动的测试研究. 甘肃科技. 2022(01): 26-29 .
    9. 黄鹏,殷琳,张雯洁,周卓琳,易丙旺. 公共交通引起的地面振动衰减分析. 宁波工程学院学报. 2022(03): 15-20 .
    10. 李韶华,冯桂珍,丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报. 2021(09): 2554-2568 . 本站查看
    11. 王立安,张家玮,李奎奎,刘生纬. 饱和-非饱和土双层地基在振动压路机作用下的振动响应. 岩土力学. 2021(11): 3182-3190 .
    12. 邹鸿翔,郭丁华,甘崇早,唐曙光,袁俊,魏克湘,张文明. 磁力耦合道路能量收集设计与动力学分析. 力学学报. 2021(11): 2941-2949 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1203) PDF downloads (92) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return