EI、Scopus 收录
中文核心期刊
Ren Huilan, Chu Zhuxin, Li Jianqiao, Ma Tianbao. RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210. DOI: 10.6052/0459-1879-20-010
Citation: Ren Huilan, Chu Zhuxin, Li Jianqiao, Ma Tianbao. RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210. DOI: 10.6052/0459-1879-20-010

RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES

  • Received Date: January 08, 2020
  • The electromagnetic radiation interference, which can be obviously observed during the explosives process, has attracted attention in many fields. However, the corresponding generation mechanism and theoretical model are still immature, experiments are still the key approach to study this phenomenon. This paper designs experiments to collect the electromagnetic radiation signals, generated by different charges of composition B explosives (Comp B), and uses the wavelet transform method to obtain these signals time-frequency characteristics, namely the main spectrum distribution is in the range of 050 kHz. Furthermore, the self-developed EXPOSION-3D software is used to simulate the experimental conditions to obtain the characteristics of the flow field during the explosion. By comparing the experimental results with the numerical simulations, series of conclusions are given in the following. The first pulse signal is the electromagnetic pulse directly generated by the high-temperature and high-pressure plasma generated by the detonation of Comp B; the second pulse signal is an electromagnetic pulse generated by the plasma formed at the air shock wave front which is caught up by the reflected shock wave from the ground; the third pulse signal is an invalid signal caused by the shock wave hitting the measurement coils. The amplitude of the first electromagnetic pulse has a linear relationship with the 1/3 power of the charge, and its arrival time is not sensitive to the charge of explosive. The time of the second electromagnetic pulse is in an exponential relationship with the charge of explosive. Overall, this paper put forward the characteristics of the explosion wave flow field when the shock wave reflection forms the electromagnetic wave signal, which provides verification data for the subsequent theoretical research.
  • [1] 曹景阳, 谢树果, 苏东林 等. 航天火工品爆炸引起的电磁干扰测量. 北京航空航天大学学报, 2011,37(11):1384-1394
    [1] ( Cao Jingyang, Xie Shuguo, Su Donglin, et al. Electromagnetic interference caused by aerospace explosives. Journal of Beijing University of Aeronautics and Astronautics, 2011,37(11):1384-1394 (in Chinese))
    [2] Boronin AP, Kapinos VN, Krenev SA, et al. Physical mechanism of electromagnetic field generation during the explosion of condensed explosive charges. Survey of literature. Combustion Explosion and Shock Waves, 1990,26(5):597-602
    [3] Fine JE. Estimates of the electromagnetic radiation from detonation of conventional explosives. Army Research Laboratory, 2001, ARL-TR-2447
    [4] Fine JE, Vinci SJ. Causes of electromagnetic radiation from detonation of conventional explosives: A literature survey. Army Research Laboratory, 1998, ARL-TR-1690
    [5] 戴晴, 何建国, 王尚武 等. 等离子体云团宽带电磁辐射源的实验研究. 强激光与粒子束, 2010,22(6):1399-1403
    [5] ( Dai Qing, He Jianguo, Wang Shangwu, et al. Experimental study on wideband electromagnetic radiation from plasma cloud. High Power Laser and Prticle Beams, 2010,22(6):1399-1403 (in Chinese))
    [6] Mende F. Electrodynamics and thermodynamics of nuclear explosions and TNT. LAP LAMBERT Academic Publishing, 2014
    [7] Kuhl AL, White DA, Kirkendall BA. Electromagnetic waves from TNT explosions. Journal of Electromagnetic Analysis and Applications, 2014,6(10):280-295
    [8] 陈鸿, 何勇, 潘绪超 等. 铝添加物对炸药爆轰过程中的电磁辐射影响实验研究. 科学发现, 2016,4(6):398-404
    [8] ( Chen Hong, He Yong, Pan Xuchao, et al. Experimental research on the effect of aluminum additive on the electromagnetic radiation in detonation process. Science Discovery, 2016,4(6):398-404 (in Chinese))
    [9] 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理. 力学学报, 2018,50(5):1206-1218
    [9] ( Li Jianqiao, Ma Tianbao, Ning Jianguo. Mechanism of explosion-induced disturbance in natural magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1206-1218 (in Chinese))
    [10] Kolsky H. Electromagnetic waves emitted on detonation of Explosives. Nature, 1954,173(4393):77
    [11] Takakura T. Radio noise radiated on the detonation of explosive. Publications-Astronomical Society of Japan, 1995,7(4):210-220
    [12] Cook MA. The Science of High Explosives. New York: Reinhold Publishing Corporation, 1958: 440
    [13] Gorshunov LM, Kononenko GP, Sirotnin EI. Electromagnetic disturbances accompanying explosions. Soviet Physics JEPT, 1968,26(3):500-502
    [14] Walker CW. Observations of the electromagnetic signals from high explosive detonation. Lawrence Radiation Laboratory Report, 1970, UCRL-72150
    [15] Soloviev SP, Surkov VV, Sweeney JJ. Quadrupolar electromagnetic field from detonation of high explosive charges on the ground surface. Journal of Geophysical Research Solid Earth, 2002, 107(B6): ESE4-1-ESE4-12
    [16] Harlin J, Nemzek R. Physical properties of conventional explosives deduced from radio frequency emissions. Propellants Explosives Pyrotechnics, 2009,34(6):544-550
    [17] Nemzek , Robert J, Stephen J, et al. Ten trials at lower slobbovia: Searching for repetitive electromagnetic and seismoacoustic signatures in explosions. Los Alamos National Lab, 2013, LA-UR-13-22138
    [18] 王长利, 周刚, 蔡宗义 等. 带壳装药热爆炸冲击波超压测量及分析. 兵工学报, 2012,33(5):574-578
    [18] ( Wang Changli, Zhou Gang, Cai Zongyi, et al. Measurement and analysis of shock wave overpressure of thermal explosion of charge with shell. Acta Armamentarii, 2012,33(5):574-578 (in Chinese))
    [19] 王长利, 李迅, 刘晓新 等. 典型炸药爆炸过程的电磁辐射实验研究. 兵工学报, 2014,35(S2):188-192
    [19] ( Wang Changli, Li Xun, Liu Xiaoxin, et al. The experimental research on the electromagnetic radiation aroused by detonation of explosive. Acta Armamentarii, 2014,35(S2):188-192 (in Chinese))
    [20] Sharif MI, Li JP, Sharif A. A noise reduction based wavelet denoising dystem for partial discharge signal. Wireless Personal Communications, 2019(108):1329-1343
    [21] 张阳峰, 韦仕鸿, 邓娜娜 等. 基于小波降噪的振动传感器数据分析. 计算机科学, 2019,46(6A):537-539, 565
    [21] ( Zhang Yangfeng, Wei Shihong, Deng Nana, et al. Vibration sensor data analysis based on wavelet denoising. Computer Science, 2019,46(6A):537-539, 565 (in Chinese))
    [22] 马天宝, 任会兰, 李健 等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016,48(3):599-608
    [22] ( Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):599-608 (in Chinese))
    [23] 姚成宝, 王宏亮, 浦锡锋 等. 空中强爆炸冲击波地面反射规律数值模拟研究. 爆炸与冲击, 2019,39(11):112201-1
    [23] ( Yao Chengbao, Wang Hongliang, Pu Xifeng, et al. Numerical simulation of intense blast wave reflected on rigid ground. Explosion and Shock Waves, 2019,39(11):112201-1 (in Chinese))
    [24] 吴赛, 赵均海, 张冬芳 等. 自由空气中爆炸冲击波的数值分析. 工程爆破, 2019,25(3):1-6, 31
    [24] ( Wu Sai, Zhao Junhai, Zhang Dongfang, et al. Numerical simulation of intense blast wave reflected on rigid ground. Engineering Blasting, 2019,25(3):1-6, 31 (in Chinese))
    [25] 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,50(2):395-404
    [25] ( He Tao. A partitioned strong coupling algorith for fluid-structure interaction using arbitrary lagrangian-eulerian finite eleent forulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):395-404 (in Chinese))
    [26] 唐恩凌, 唐伟富, 相升海 等. 超高速碰撞产生弱磁场线圈测量系统. 强激光与粒子束, 2010,22(5):1132-1136
    [26] ( Tang Enling, Tang Weifu, Xiang Shenghai, et al. Coil measurement system for weak magnetic field generated by hypervelocity impact. High Power Laser and Particle Beams, 2010,22(5):1132-1136 (in Chinese))
    [27] 麻智超, 谢树果, 曹景阳. 基于小波变换的聚能爆炸电磁辐射分析. 火工品, 2010(5):26-29
    [27] ( Ma Zhichao, Xie Shuguo, Cao Jingyang. Analysis of electromagnetic radiation from explosion of shaped charge by wavelet transform. Initiators & Pyrotechnics, 2010(5):26-29 (in Chinese))
    [28] 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法. 振动与冲击, 2018,37(4):226-232
    [28] ( Wang Zonglian, Ren Huilan, Ning Jianguo. Acoustic emission source location based on wavelet transform de-noising. Journal of Vibration and Shock, 2018,37(4):226-232 (in Chinese))
    [29] 任会兰, 宁建国, 宋水舟 等. 基于声发射矩张量分析混凝土破坏的裂纹运动. 力学学报, 2019,51(6):1830-1840
    [29] ( Ren Huilan, Ning Jianguo, Song Shuizhou, et al. Investigation on crack growth in concrete by moment tensor analysis of acoustic emission. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1830-1840 (in Chinese))
    [30] 吴艳, 张蓉竹. 小波阈值降噪算法在光电探测器信号处理中的应用. 光子学报, 2019,48(10):1004004-1
    [30] ( Wu Yang, Zhang Rongzhu. Application of wavelet threshold denoising algorithm in photodetectors signal processing. Acta Photonica Sinica, 2019,48(10):1004004-1 (in Chinese))
    [31] 戴晴, 李传胪, 陈国强 等. 低温等离子体激励宽带电磁波信号的实验研究. 电子信息对抗技术, 2009,24(5):72-74
    [31] ( Dai Qing, Li Chuanlu, Chen Guoqiang, et al. Experimentalstudy of wideband electromagnetic radiation from plasma cloud. Electronic Information Warfare Technology, 2009,24(5):72-74 (in Chinese))
    [32] 杨亚东, 李向东, 王晓鸣. 爆炸冲击波空中传播特征参量的优化拟合. 爆破器材, 2014,43(1):13-18
    [32] ( Yang Yadong, Li Xiangdong, Wang Xiaoming. Optimum fitting for characteristic parameters of blast shockwaves traveling in air. Explosive Materials, 2014,43(1):13-18 (in Chinese))
    [33] Ning JG, Ma TB, Fei GL. Multi-material eulerian method and parallel computation for 3D explosion and impact problems. International Journal of Computational Methods, 2014, 11(5): 1350079-1-15
    [34] Xu XZ, Ma TB, Ning JG. Failure analytical model of reinforced concrete slab under impact loading. Construction and Building Material, 2019, ( 223):679-691
    [35] Xu XZ, Ma TB, Liu HY, et al. A three-dimensional coupled Euler-PIC method for penetration problems. International Journal for Numerical Methods in Engineering, 2019,119(8):737-756
    [36] 任会兰, 宁建国, 许香照. 不同炸药量在工事中爆炸的三维数值模拟. 高压物理学报, 2013,27(2):216-222
    [36] ( Ren Huilan, Ning Jianguo, Xu Xiangzhao. The 3-D numerical simulation for different explosive charges in the fortifications. Chinese Journal of High Pressure Physics, 2013,27(2):216-222 (in Chinese))
    [37] Huang SH, Wang WR, Luo XS. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interfaceat extreme compressing conditions. Physics of Plasmas, 2018,25:062705-1
    [38] 张嘉炜, 黄生洪. 极端冲击下激波诱导附加电场加速金属/气体界面的经验模型. 高压物理学报, 2019,33(1):012301-1
    [38] ( Zhang Jiawei, Huang Shenghong. Acceleration evaluation model of metal/gas interface by extra electric field induced by shock under extreme impacting conditions. Chinese Journal of High Pressure Physics, 2019,33(1):012301-1 (in Chinese))
    [39] Li JQ, Hao L, Li J. Theoretical modeling and numerical simulations of plasmas generated by shock waves. Sci China Tech Sci, 2019,62(12):2204-2212
  • Related Articles

    [1]Zhou You, Hou Xinyu, Shi Huabin, Chen Xin. EFFICIENT NUMERICAL MODEL FOR SUSPENDED SEDIMENT TRANSPORT OVER RIPPLED BED UNDER WAVE-CURRENT ACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(2): 453-463. DOI: 10.6052/0459-1879-24-437
    [2]研究了雷诺数Re=200, 1000, 线速度比α=0.5,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021
    [3]混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500
    [4]THE TWO-FLUID MODEL OF TURBULENT BUOYANT RECI RCULATING OIL-WATER TWO-PHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 546-555. DOI: 10.6052/0459-1879-1992-5-1995-774
    [5]串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772
    [6]分层流体中栅格湍流的特性[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 257-264. DOI: 10.6052/0459-1879-1991-3-1995-836

Catalog

    Article Metrics

    Article views (2682) PDF downloads (218) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return