EI、Scopus 收录
中文核心期刊
FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 575-584. DOI: 10.6052/0459-1879-1996-5-1995-371
Citation: FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 575-584. DOI: 10.6052/0459-1879-1996-5-1995-371

FINITE ELEMENT ANALYSIS FOR GRADIENT PLASTICITY AND MODELLING OF STRAIN LOCALIZATION

  • A finite element method for gradient plastic continuum is presented The Laplacian of the internal state variable is determined on the basis of a least square polynomial approximation of the internal state variable around each integration point A mixed strain element with one point guadrature and hourglass control derived from the Hu-Washizu principle and the average von Mises yield criterion are particularly considered The consistent element stiffness matrix and consistent algorithm for the integratio...
  • Related Articles

    [1]Wu Shouxin, Wei Jirui, Yang Shuwei. ANALYSIS OF STRAIN LOCALIZATION BY ENERGY EQUIVALENCE:Ⅱ.FINITE ELEMENT SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 880-893. DOI: 10.6052/0459-1879-16-330
    [2]Wu Shouxin, Wei Jirui, Yang Shuwei. ANALYSIS OF STRAIN LOCALIZATION BY ENERGY EQUIVALENCE: Ⅰ. ONE-DIMENSIONAL ANALYTICAL SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 667-676. DOI: 10.6052/0459-1879-16-328
    [3]Lu Mengkai, Zhang Hongwu, Zheng Yonggang. EMBEDDED STRONG DISCONTINUITY MODEL BASED MULTISCALE FINITE ELEMENT METHOD FOR STRAIN LOCALIZATION ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 649-658. DOI: 10.6052/0459-1879-16-397
    [4]RESEARCH ON NON OSCILLATION, PARAMETER FREE FINITE ELEMENT SCHEME 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(4): 391-403. DOI: 10.6052/0459-1879-1998-4-1995-142
    [5]THE CONVERGENCE PROOF OF THE PLANE RATIONAL FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 676-685. DOI: 10.6052/0459-1879-1997-6-1995-284
    [6]MEAN FUNCTIONS AND MEAN MODIFICATION OF FINITE ELEMENT BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 739-743. DOI: 10.6052/0459-1879-1994-6-1995-603
    [7]ANTI-PLANE WAVE MOTION IN FINITE ELEMENT MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 207-215. DOI: 10.6052/0459-1879-1992-2-1995-729
    [8]APPLICATION OF FRACTURE MECHANICS AND BEM TO STRAIN LOCALIZATION PROBLEMS IN A FINITE BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(1): 71-81. DOI: 10.6052/0459-1879-1992-1-1995-713
    [9]A CONSISTENT ALGORITHM OF NEWTON ITERATION AND ITS APPLICATION IN PLATE BENDING FINITE ELEMENT ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 579-588. DOI: 10.6052/0459-1879-1990-5-1995-987
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(9)

    1. 崔元博,孔德仁. 爆炸场强电磁辐射测试系统设计. 湖南大学学报(自然科学版). 2024(08): 219-230 .
    2. 汪柯,施长军,郭莎,李红宾,杜海文,何超,周涛. 云爆弹二次引信爆炸环境干扰因素分析及抗干扰设计研究. 弹箭与制导学报. 2024(06): 56-61+68 .
    3. 赵宏涛,栗建桥,马天宝. 炸药爆炸过程中电磁辐射数值模拟研究. 兵器装备工程学报. 2022(01): 182-187+273 .
    4. 马竹新,王代华,张瑞刚,赵华伟,杜涵洲. 基于可变阻抗靶网的多通道破片测速系统. 现代电子技术. 2022(11): 83-87 .
    5. 张家洪,王欣,陈福深. 用于爆炸辐射电磁脉冲时域测量的集成光波导电场传感器研制. 仪器仪表学报. 2022(07): 149-156 .
    6. 崔元博,孔德仁,张学辉,张逸飞. 典型炸药爆炸过程中电磁辐射特性分析. 国防科技大学学报. 2022(06): 70-80 .
    7. 崔元博,孔德仁,张学辉,王良全. TNT爆炸电磁辐射信号测量及分析. 含能材料. 2021(03): 241-250 .
    8. 吴文苍,董新龙,庞振,周风华. TA2钛合金开口柱壳外爆碎片分布研究. 力学学报. 2021(06): 1795-1806 . 本站查看
    9. 崔元博,孔德仁. 某型弹静爆过程中电磁辐射频谱分析. 火工品. 2020(05): 18-22 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1680) PDF downloads (921) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return