EI、Scopus 收录
中文核心期刊
Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367
Citation: Chen Ju, Guo Yongxin, Liu Shixing, Mei Fengxiang. DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 928-931. DOI: 10.6052/0459-1879-19-367

DYNAMICAL CONTROL OF STABILITY FOR BIRKHOFFIAN SYSTEM

  • Received Date: December 22, 2019
  • A dynamical control of the stability of equilibrium for the Birkhoffian system and generalized Birkhoffian system are studied. First, the equilibrium of motion and the equations of equilibrium of the systems are established. Secondly, the dynamical control of the stability of equilibrium for the Birkhoffian system where the Birkhoffian contain control parameters is investigated. The control parameters are chosen such that the Birkhoffian B becomes a definite function and its derivative of time ˙B is opposite sign. Thirdly, the dynamical control of the stability of equilibrium for Birkhoffian system where control parameters are contained in the Birkhoffian or in the additional terms is explored. Finally, some examples are given to illustrate the application of the results.
  • [1] Santilli RM. Foundations of Theoretical Mechanics I, II. New York: Springer-Verlag, 1983
    [2] 梅凤翔, 史荣昌, 张永发 等. Birkhoff 系统动力学. 北京: 北京理工大学出版社, 1996
    [2] ( Mei Fengxiang, Shi Rongchang, Zhang Yongfa, et al. Dynamics of Birkhoffian System. Beijing: Beijing Institute of Technology Press, 1996 (in Chinese))
    [3] Galiullin AS, Gafarov GG, Malaishka RP, et al. Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems. Moscow:UFN, 1997 (in Russian))
    [4] 梅凤翔. 广义 Birkhoff 系统动力学. 北京: 科学出版社, 2013
    [4] ( Mei Fengxiang. Dynamics of Generalized Birkhoff System. Beijing: Science Press, 2013 (in Chinese))
    [5] Mei FX. The Noether's theory of Birkhoffian systems. Science in China, Serie A, 1993,36(12):1456-1467
    [6] Shi RC, Mei FX, Zhu HP. On the stability of motion of a Birkhoff system. Mech Res Commu, 1994,21(3):269-272
    [7] Mei FX. On the Birkhoffian mechanics. Int J Non-Linear Mech, 2001,36(5):817-834
    [8] Fu JL, Chen LQ, Luo Y, et al. Stability for the equilibrium state manifold of relatiristic Birkhoffian systems. Chin Phys, 2003,12(4):351-356
    [9] 许志新. Birkhoff 系统的守恒量与稳定性. 物理学报, 2005,54(10):4971-4973
    [9] ( Xu Zhixin. The conserved quantity and the stability of Birkhoff system. Acta Phys Sin, 2005,54(10):4971-4973 (in Chinese))
    [10] Li YM, Mei FX. Stability for manifolds of equilibrium states of generalized Bikrhoff system. Chin Phys B, 2010,19(8):080302
    [11] Mei FX, Wu HB. Bifurcation for the generalized Birkhoffian system. Chin Phys B, 2015,24(5):054501
    [12] 张毅. 自治广义 Birkhoff 系统的平衡稳定性. 物理学报, 2010,59(1):0020-05
    [12] ( Zhang Yi. Stability of equilibrium for the autonomous generalized Birkhoffian system. Acta Phys Sin, 2010,59(1):0020-05 (in Chinese))
    [13] 陈向炜, 曹秋鹏, 梅凤翔. 广义 Birkhoff 系统稳定性对双参数的依赖关系. 力学季刊, 2017,38(1):108-112
    [13] ( Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. Dependance of stability of generalized Birkhoff system on two parameters. Chinese Quarterly of Mechanics, 2017,38(1):108-112 (in Chinese))
    [14] 崔金超, 梅凤翔. 广义 Birkhoff 方程的平衡稳定性. 动力学与控制学报, 2010,8(4):297-3
    [14] ( Cui Jinchao, Mei Fengxiang. Stability of equilibrium for generalized Birkhoff equation. Journal of Dynamics and Control, 2010,8(4):297-3 (in Chinese))
  • Related Articles

    [1]Wang Jiahui, Zou Lin, Zhang Yuchen, Miao Yabo, Xu Hanbin. NUMERICAL STUDY ON THE AERODYNAMIC PERFORMANCE OF THE WAVY LEADING- EDGE BLADE UNDER ZERO-NET-MASS-FLUX JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2865-2877. DOI: 10.6052/0459-1879-24-203
    [2]Li Shuai, Jiang Zhenhua, Zhang Shan, Yin Tong, Yan Chao. INVESTIGATION ON THE HEAT FLUX REDUCTION CHARACTERISTICS OF THE LOCAL BULGES IN THE V-SHAPED BLUNT LEADING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 915-927. DOI: 10.6052/0459-1879-23-409
    [3]Yang Junyuan, Li Xudong, Zeng Shuhua, Zhao Wenwen, Zhang Fu, Chen Weifang. RESEARCH ON THE AERO-HEATING AT THE SHARPENED LEADING EDGE BASED ON NONLINEAR COUPLED CONSTITUTIVE RELATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2321-2330. DOI: 10.6052/0459-1879-23-171
    [4]Meng Xufei, Bai Peng, Liu Chuanzhen. RESEARCH ON DESIGN METHOD OF PLANFORM-CUSTOMIZED WAVERIDER FROM VARIABLE MACH NUMBER CONICAL FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1809-1819. DOI: 10.6052/0459-1879-23-123
    [5]Guo Shuaiqi, Liu Wen, Zhang Chen’an, Wang Famin. DESIGN AND OPTIMIZATION FOR HYPERSONIC CONE-DERIVED WAVERIDER WITH BLUNTED LEADING-EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1414-1428. DOI: 10.6052/0459-1879-21-611
    [6]Wang Jun, Li Zhufei, Zhang Zhiyu, Yang Jiming. EFFECTS OF GEOMETRY PARAMETERS ON AEROTHERMAL HEATING LOADS OF V-SHAPED BLUNT LEADING EDGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3274-3283. DOI: 10.6052/0459-1879-21-448
    [7]Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036
    [8]Hu Shouchao, Cui Kai, Li Guangli, Xiao Yao, Situ Ming. OPTIMIZATION AND ANALYSIS OF THE LEADING EDGE SHAPE FOR HYPERSONIC AIRPLANES BASED ON DOE METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 290-299. DOI: 10.6052/0459-1879-15-231
    [9]Zhigang Wu, Shujun Tan. Time-varying optimal control via canonical transformation of hamiltonian system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 86-97. DOI: 10.6052/0459-1879-2008-1-2007-235
    [10]Study on some breakdown forms and characteristics of leading edge vortex over delta wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 106-111. DOI: 10.6052/0459-1879-2006-1-2004-126
  • Cited by

    Periodical cited type(4)

    1. 刘超宇,屈峰,孙迪,刘传振,钱战森,白俊强. 基于离散伴随的高超声速密切锥乘波体气动优化设计. 航空学报. 2023(04): 64-82 .
    2. 郑晓刚,朱呈祥,尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计. 力学学报. 2022(03): 601-611 . 本站查看
    3. 郭帅旗,刘文,张陈安,王发民. 高超声速钝前缘乘波构型优化设计研究. 力学学报. 2022(05): 1414-1428 . 本站查看
    4. 陈立立,郭正,侯中喜,刘建霞,汪文凯,邓小龙. 高超声速飞行器气动布局研究综述. 空天技术. 2022(03): 42-61 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1614) PDF downloads (188) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return