EI、Scopus 收录
中文核心期刊
Wang Wei, Tang Tao, Lu Shengpeng, Zhang Qingdian, Wang Xiaofang. NUMERICAL SIMULATION AND ANALYSIS OF ACTIVE JET CONTROL OF HYDROFOIL CAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1752-1760. DOI: 10.6052/0459-1879-19-222
Citation: Wang Wei, Tang Tao, Lu Shengpeng, Zhang Qingdian, Wang Xiaofang. NUMERICAL SIMULATION AND ANALYSIS OF ACTIVE JET CONTROL OF HYDROFOIL CAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1752-1760. DOI: 10.6052/0459-1879-19-222

NUMERICAL SIMULATION AND ANALYSIS OF ACTIVE JET CONTROL OF HYDROFOIL CAVITATION

  • Received Date: August 18, 2019
  • Available Online: October 20, 2019
  • In order to improve the cavitation characteristics of the flflow fifield on the suction side of the hydrofoil under high-speed flflow conditions, a method of active water jet arranged on the suction side is proposed to control the flflow around the hydrofoil. Based on a fifilter-based density correction turbulence model combined with Zwart-Gerber-Belamri cavitation model, the inflfluence of the water jet on the cavitation and hydrodynamic characteristics of the hydrofoil is analyzed when the cavitation number is 0.83, the angle of attack is 8◦ and the water jet is 0.19c from the foil leading edge. The intensity of the re-entrant jet is analyzed quantitatively to explore the relationship between the re-entrant jet and the cavitation characteristics of the flflow fifield. The numerical results show that the time-average cavity volume on the suction side of the hydrofoil with jet is 14/15 smaller than that of the original hydrofoil, which indicate that the water jet can signifificantly weaken the development of cavitation, and thus the cavitation pattern in the flflow fifield transforms from cloud cavitation to sheet cavitation. Moreover, the water injection greatly improves the hydrodynamic performance of the hydrofoil. The lift to drag ratio of the hydrofoil increases by 22.9% compared with that of the original hydrofoil, meanwhile, and the shedding frequency of the cavitation decreases by 26.2%, and the amplitude caused by the shedding of the cavitation decreases by 9.1%. The water jet shrinks low pressure area on the suction side sharply and reduces the reverse pressure difffference of flflow in the vicinity of the hydrofoil, as a result, intensity of the re-entrant jet declined. The water injection also thins the boundary layer which enhances the anti-reverse pressure gradient capability of the flflow and then blocks the re-entrant jet. Those explain the mechanism of cavitation flflow control by active water injection.
  • 1 Pendar MR, Roohi E. Investigation of cavitation around 3D hemi-spherical head-form body and conical cavitators using different tur-bulence and cavitation models. Ocean Engineering, 2016, 112: 287-306
    2 王畅畅, 王国玉, 黄彪. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018, 50(5): 990-1002 (Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoreti-cal and Applied Mechanics, 2018, 50(5): 990-1002 (in Chinese))
    3 李晓俊. 离心泵叶片前缘空化非定常流动机理及动力学特性研究. [博士论文]. 镇江: 江苏大学, 2013 (Li Xiaojun. Mechanism and unsteady dynamic characteristics of leading edge cavitation in a centrifugal pump. [PhD Thesis]. Zhenjiang: Jiangsu University, 2013 (in Chinese))
    4 Li CY, Ceccio SL. Interaction of single travelling bubbles with the boundary layer and attached cavitation. Journal of Fluid Mechanics, 1996, 322: 329-353
    5 Chen YL, Heister SD. Modeling hydrodynamic nonequilibrium in cavitating flows. Journal of Fluids Engineering, 1996,118(1): 172-178
    6 Huang B, Wang GY. Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil. Science China Technological Science, 2011, 54(7): 1801-1812
    7 张洋, 陈科, 尤云祥等. 浮力气泡对水平壁面的回弹动力学特性. 力学学报, 2019, 51(5): 1285-1295 (Zhang Yang, Chen Ke, You Yunxiang, et al. Bouncing behaviors of a buoyancy-driven bubble on a horizontal solid wall. Chinese Journal of Theoretical and Ap-plied Mechanics, 2019, 51(5): 1285-1295 (in Chinese))
    8 Huang B, Zhao Y, Wang GY. Large eddy simulation of turbu-lent vortex-cavitation interactions in transient sheet/cloud cavitating flows. Computers & Fluids, 2014, 92: 113-124
    9 Ye YH, Li GJ. Modeling of hydrodynamic cavitating flows consid-ering the bubble- bubble interaction, International Journal of Multi-phase Flow, 2016, 84: 155-164
    10 Anderlini A, Salvetti MV, Agresta A, et al. Stochastic sensitivity analysis of numerical simulations of injector internal flows to cavi-tation modeling parameters. Comput Fluids, 2019, 183: 130-147
    11 Congedo PM, Goncalves E, Rodio MG. About the uncertainty quan-tification of turbulence and cavitation models in cavitating flows simulations. European Journal of Mechanics — B/Fluids, 2015, 53: 190-204
    12 Huang B, Wang GY, Zhao Y. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model. Journal of Hydrodynamics, 2014, 26(1): 26-36
    13 Johansen ST, Wu JY, Shyy W. Filter-based unsteady RANS compu-tations. International Journal of Heat and Fluid Flow, 2004, 25(1): 10-21
    14 Coutier-Delgosha O, Reboud JL, Delannoy Y. Numerical simulation of the unsteady behaviour of cavitating flows. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527-548
    15 Yu A, Ji B, Huang RF, et al. Cavitation shedding dynamics around a hydrofoil simulated using a filter-based density corrected model. Science China Technological Sciences, 2015, 58(5): 864-869
    16 Timoshevskiy MV, Zapryagaev II, Pervunin KS, et al. Manipulating cavitation by a wall jet: Experiments on a 2D hydrofoil. Interna-tional Journal of Multiphase Flow, 2018, 99: 312-328
    17 Chatterjee D, Arakeri VH. Towards the concept of hydrodynamic cavitation control. Journal of Fluid Mechanics, 1997, 332: 377-394
    18 Chahine GL, Frederick GF, Bateman RD. Propeller tip vortex cavita-tion suppression using selective polymer injection. Journal of Fluids Engineering, 1993, 115(3): 497-503
    19 Chang N, Ganesh H, Yakushiji R, et al. Tip vortex cavitation sup-pression by active mass injection. Journal of Fluids Engineering, 2011, 133(11): 111301
    20 M¨akiharju SA, Ganesh H, Ceccio SL. Effect of non-condensable gas injection on cavitation dynamics of partial cavities//Farhat M, M¨uller A eds. Journal of Physics: Conference Series, the 9th In-ternational Symposium on Cavitation (CAV2015), Lausanne, 2015, Bristol: Ashton A, 2015. 012161
    21 Wang W, Yi Q, Wang YY, et al. Adaptability research of hydro-foil surface water injection on cavitation suppression. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 461-466, 480
    22 Leger AT, Ceccio SL. Examination of the flow near the leading edge of attached cavitation. Part 1. Detachment of two-dimensional and axisymmetric cavities. Journal of Fluid Mechanics, 1998, 376: 61-90
    23 Kadivar E, Moctar O E, Javadi K. Investigation of the effect of cavi-tation passive control on the dynamics of unsteady cloud cavitation. Applied Mathematical Modelling, 2018, 64: 333-356
    24 王巍, 唐滔, 卢盛鹏等. 水翼吸力面布置凹槽抑制空化研究. 农业工程学报, 2019, 35(2): 40-47 (Wang Wei, Tang Tao, Lu Sheng-peng, et al. Investigation of cavitation suppression by arranging pits on hydrofoil suction side. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 40-47 (in Chinese))
    25 Kawanami Y, Kato H, Yamaguchi H, et al. Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 1997, 119(4): 788-794
    26 Wang W, Lu SP, Xu RD, et al. Numerical study of hydrofoil sur-face jet flow on cavitation suppression. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10): 829-834
    27 Coutier-Delgosha O, Devillers JF, Leriche M, et al. Effect of wall roughness on the dynamics of unsteady cavitation. Journal of fluids Engineering, 2005, 127(4): 726-733
    28 Lu SP, Wang W, Hou TF, et al. Experiment research on cavitation control by active injection//Katz J. Proceedings of the 10th Interna-tional Symposium on Cavitation(CAV2018), The 10th International Symposium on Cavitation(CAV2018), Baltimore, 2018, New York: ASME Press, 2018: 363-368
    29 张佳悦, 李达钦, 吴钦等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019, 51(3): 803-812 (Zhang Jiayue, Li Daqin, Wu Qin, et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry. Chi-nese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803-812 (in Chinese))
    30 Coutier-Delgosha O, Fortes-patella R, Reboud JL. Evaluation of the turbulence model influence on the numerical simulations of un-steady cavitation. Journal of Fluids Engineering, 2003, 125(1): 38-45
    31 Zwart PJ, Gerber AG, Belamri T. A two-phase flow model for pre-dicting cavitation dynamics//Fifth International Conference on Mul-tiphase Flow, Yokohama, Japan, 2004, 152
    32 Leroux JB, Astolfi JA, Billard JY. An experimental study of un-steady partial cavitation. Journal of Fluids Engineering, 2004, 126(1): 94-101
    33 李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243 (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The study of flow past multiple cylinders at high reynolds numbers. Chinese Journal of Theoretical and Applied Me-chanics, 2018, 50(2): 233-243 (in Chinese))
    34 王巍, 徐瑞铎, 羿琦等. 回射流强度对水翼表面空化形态的影响. 排灌机械工程学报, 2016, 34(11): 921-926, 940 (Wang Wei, Xu Ruiduo, Yi Qi, et al. Influence of re-entrant jet strength on cavita-tion characteristics of hydrofoil. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(11): 921-926, 940 (in Chinese))
  • Related Articles

    [1]Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. ACTIVE FLOW CONTROL OF WAVY CYLINDER BASED ON STEADY BLOWING AND SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983. DOI: 10.6052/0459-1879-22-212
    [2]Yang Pengyu, Zhang Xin, Lai Qingren, Che Binghui, Chen Lei. EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF SCALING EFFECTS OF WINGS ON THE FLOW SEPARATION CONTROL USING PLASMA ACTUATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3321-3330. DOI: 10.6052/0459-1879-21-379
    [3]Zhang Wenwen, Xu Rongwu, He Lin, Pan Longde, Zhao Jiaxi. EXPERIMENTAL INVESTIGATION INTO THE CONTROL OF FLOW-INDUCED OSCILLATIONS OF UNDERWATER APERTURE-CAVITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2762-2775. DOI: 10.6052/0459-1879-21-143
    [4]Luo Kai, Wang Qiu, Li Yixiang, Li Jinping, Zhao Wei. RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531. DOI: 10.6052/0459-1879-21-067
    [5]Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. DOI: 10.6052/0459-1879-20-183
    [6]Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
    [7]Wang Wei, Zhang Qingdian, Tang Tao, An Zhaoyang, Tong Tianhao, Wang Xiaofang. MECHANISM INVESTIGATION OF WATER INJECTION ON SUPPRESSING HYDROFOIL CLOUD CAVITATION FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23. DOI: 10.6052/0459-1879-19-282
    [8]Yiwen Li, Yutian Wang, Lei Pang, Lianghua Xiao, Zhiwen Ding, Pengzhen Duan. RESEARCH PROGRESS OF PLASMA/MHD FLOW CONTROL IN INLET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321. DOI: 10.6052/0459-1879-18-290
    [9]Yan Hong, Lin Ke. CONTROL MECHANISM OF THERMAL ACTUATOR IN SUPERSONIC ROUND JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 557-570. DOI: 10.6052/0459-1879-14-379
    [10]Chen Yaohui, Li Baoming, Pan Xuchao, Liu Yixin. RESEARCH OF THE CONTROL EFFICIENCY OF LIFT INCREASE AND DRAG REDUCTION BASE ON FLOW AROUND HYDROFOIL CONTROLLED BY LORENTZ FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 414-421. DOI: 10.6052/0459-1879-14-346
  • Cited by

    Periodical cited type(9)

    1. 解浩,孟国亮,林小军,李宝栋. 前缘狭缝对NACA0015水翼非定常空化的影响. 机床与液压. 2025(04): 166-170 .
    2. 赵伟国,亢艳东,李清华,薛子阳. 叶片吸力面不同结构对离心泵空化初生的影响. 振动与冲击. 2022(07): 23-30 .
    3. 李智健,王巍,唐滔,安昭阳,纪祥,刘明雨. 主动射流抑制云空化及流致噪声的研究. 中国造船. 2022(04): 124-132 .
    4. 孙龙泉,颜皓,马贵辉,赵纪鹏. 环形槽对通气空泡融合的促进作用分析. 力学学报. 2021(02): 386-394 . 本站查看
    5. 陈国孝,刘喆,邵传平. 旋转振荡板尾流的控制研究. 力学学报. 2021(07): 1856-1875 . 本站查看
    6. 王恋舟,吴铁成,郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报. 2021(08): 2267-2278 . 本站查看
    7. 张珍,叶舒然,岳杰顺,王一伟,黄晨光. 基于组合神经网络的雷诺平均湍流模型多次修正方法. 力学学报. 2021(06): 1532-1542 . 本站查看
    8. 谢庆墨,陈亮,张桂勇,孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报. 2020(04): 1045-1054 . 本站查看
    9. 胡建军,朱晴,王美达,金瑶兰,王思民,孔祥东. 近距离下射流冲击平板PIV实验研究. 力学学报. 2020(05): 1350-1361 . 本站查看

    Other cited types(12)

Catalog

    Article Metrics

    Article views (1131) PDF downloads (69) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return