EI、Scopus 收录
中文核心期刊
Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183
Citation: Yang Hongsheng, Li Yulong, Zhou Fenghua. THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1820-1829. DOI: 10.6052/0459-1879-19-183

THE PROPAGATION PROCESS AND THE GEOMETRIC DISPERSION OF A TRAPEZOIDAL STRESS PULSE IN AN ELASTIC ROD

  • Received Date: July 14, 2019
  • Geometric dispersion effects are often difficult to avoid during stress wave propagation. Analytical analysis of the geometric dispersion of stress wave propagation in elastic rods is crucial for the study of fundamental wave problems and the dynamic mechanical behavioral characterization of materials. This paper briefly describes the one-dimensional Rayleigh-Love stress wave theory considering the lateral inertia correction in the elastic rod, and summarizes the derivation process of the control equation by the variation method. Aiming at the trapezoidal stress loading pulse commonly used in Hopkinson rod experiments, the corresponding model of the initial boundary value problem (IBVP) of the partial differential equations is established. The geometric dispersion phenomenon of pulse propagation in the rod is studied by using the Laplace transform method. The inverse Laplace transform is carried out according to the residue theorem. The analytic solutions of the stress waves at different positions and times are given in the form of series representation. The influence of the number of calculation terms on the convergence of the results is analyzed. These analytical calculation results are in good agreement with the results using three-dimensional finite element numerical simulation, which proves that the Rayleigh-Love lateral inertia correction theory can effectively characterize the geometric dispersions in typical Hopkinson bar experiments. Based on the analytic solutions, the parametric study of the trapezoidal loading pulse is conducted. The influences of propagation distance, Poisson's ratio, and the pulse slope on the geometric dispersions are quantitatively described. The analytical solution of the Rayleigh-Love rod under trapezoidal pulse loading reveals the essential law of geometric dispersion effect and can be used for the dispersion correction process in the real experiments.
  • 1 Hudson GE. Dispersion of elastic waves in solid circular cylinders. Physical Review, 1943,63:46-51
    2 Mindlin RD, McNiven HD. Axially symmetric waves in elastic rods. Journal of Applied Mechanics, 1960,27:145-151
    3 Hutchinson JR. Vibrations of solid cylinders. Journal of Applied Mechanics, 1980,47(4):901-907
    4 Davies RM. A critical study of Hopkinson pressure bar. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1948,240(821):375-457
    5 Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society B, 1949,62(11):676-700
    6 Kolsky H. Stress Waves in Solids. Oxford: Clarendon Press, 1963
    7 王礼立, 王永刚 . 应力波在用SHPB研究材料动态本构特性中的重要作用. 爆炸与冲击, 2005(1):17-25
    7 ( Wang Lili, Wang Yonggang. The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB. Explosion and Shock Waves, 2005(1):17-25 (in Chinese))
    8 刘孝敏, 胡时胜 . 大直径SHPB弥散效应的二维数值分析. 实验力学, 2000,15(4):371-376
    8 ( Liu Xiaomin, Hu Shisheng, Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB. Journal of Experimental Mechanics, 2000,15(4):371-376 (in Chinese))
    9 Shen Y, Yin X. Analysis of geometric dispersion effect of impact-induced transient waves in composite rod using dynamic substructure method. Applied Mathematical Modelling, 2016,40(3):1972-1988
    10 Tyas A, Watson AJ. An investigation of frequency domain dispersion correction of pressure bar signals. International Journal of Impact Engineering, 2001,25(1):87-101
    11 Pochhammer L. Uber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbergrenzten isotropen Kreiszylinder. Journal Fur Die Reine Und Angewandte Mathematik, 1876,81:324-336
    12 Chree C. The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications. Transactions of the Cambridge Philosophical Society, 1889,14:250-369
    13 Rayleigh JWS . The Theory of Sound Vol 1, 2nd Edition. London: Macmillan and Co, 1894
    14 Love AEH . A Treatise of the Mathematical Theory of Elasticity. New York: Dover Publication, 1944
    15 Krawczuk M, Grabowska J, Palacz M. Longitudinal wave propagation. Part I---Comparison of rod theories. Journal of Sound and Vibration, 2006,295(3-5):461-478
    16 Stephen NG, Lai KF, Young K, et al. Longitudinal vibrations in circular rods: A systematic approach. Journal of Sound and Vibration, 2012,331(1):107-116
    17 王礼立 . 应力波基础, 第2版. 北京: 国防工业出版社, 2005
    17 ( Wang Lili. Foundation of Stress Waves, 2nd Edition. Beijing: National Defense Industry Press, 2005 (in Chinese))
    18 Brizard D, Jacquelin E, Ronel S. Polynomial mode approximation for longitudinal wave dispersion in circular rods. Journal of Sound and Vibration, 2019,439:388-397
    19 Naitoh M, Daimaruya M. The influence of a rise time of longitudinal impact on the propagation of elastic waves in a bar. Bulletin of JSME, 1985,28:20-25
    20 Yang LM, Shim VPW. An analysis of stress uniformity in split Hopkinson bar test specimens. International Journal of Impact Engineering, 2005,31(2):129-150
    21 Follansbee PS, Frantz C. Wave propagation in the split Hopkinson pressure bar. Journal of Engineering Materials and Technology, 1983,105:61-66
    22 Gong JC, Malvern LE, Jenkins DA. Dispersion investigation in the split Hopkinson pressure bar. Journal of Engineering Materials and Technology, 1990,112:309-314
    23 Li Z, Lambros J. Determination of the dynamic response of brittle composites by the use of split Hopkinson pressure bar. Composites Science and Technology, 1999,59:1097-1107
    24 Park SW, Zhou M. Separation of elastic waves in split Hopkinson bars using one-point strain measurements. Experimental Mechanics, 1999,39(4):287-294
    25 Gama BA, Lopatnikov SL, Gillespie JW. Hopkinson bar experimental technique: A critical review. Applied Mechanics Reviews, 2004,57(4):223-250
  • Related Articles

    [1]Wang Zhechao, Jia Wenjie, Feng Xiating, Wang Jingkui. ANALYTICAL SOLUTION OF LIMIT STORAGE PRESSURES FOR TUNNEL TYPE LINED GAS STORAGE CAVERNS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 710-718. DOI: 10.6052/0459-1879-22-474
    [2]Li Yansong, Chen Shougen. ANALYTICAL SOLUTION OF FROST HEAVING FORCE IN NON-CIRCULAR COLD REGION TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207. DOI: 10.6052/0459-1879-19-226
    [3]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [4]Zheng Yuxuan, Chen Liang, Zhou Fenghua, Wang Lili. USING LAPLACE TRANSFORM TO SOLVE THE VISCOELASTIC WAVE PROBLEMS IN THE SHPB EXPERIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 843-852. DOI: 10.6052/0459-1879-14-002
    [5]Yaochen Li, Feng Qi, Zheng Zhong. Simplified theory and analytical solutions for functionally graded piezoelectric circular plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 636-645. DOI: 10.6052/0459-1879-2008-5-2007-145
    [6]Particle dispersion in large eddy structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 105-109. DOI: 10.6052/0459-1879-2005-1-2004-101
    [7]EFFECT OF BOUNDARY ABSORPTION UPON UNSTEADY DISPERSION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 340-347. DOI: 10.6052/0459-1879-1998-3-1995-135
    [8]ELASTIC/VISCOPLASTIC SOLUTION OF TWISTY COLUMNS BY MEANS OF LAPLACE FUNCTIONAL TRANSFORMAIIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(4): 434-439. DOI: 10.6052/0459-1879-1995-4-1995-451
    [9]ANALYTICAL MODELING OF SPHERE SYMMETRY DISPERSION IN MICRO-AGGREGATES POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 309-316. DOI: 10.6052/0459-1879-1993-3-1995-646
    [10]THE ANALYTICAL SOLUTION OF DIFFERENTIAL EQUATION OF ELASTIC CURVED SURFACE OF STEPPED THIN RECTANGULAR PLATE ON WINKLER'S FOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 754-762. DOI: 10.6052/0459-1879-1992-6-1995-800
  • Cited by

    Periodical cited type(8)

    1. 李泊立,王瑞丰,陈龙洋,郭伟国. 冲击加载下材料应力应变曲线振荡现象的研究综述. 实验力学. 2024(02): 208-222 .
    2. 吕超勇,赵翼飞,于涛. 基于两点测量对大直径杆中的正向波抵消研究. 组合机床与自动化加工技术. 2024(12): 51-56+61 .
    3. 杨洪升,郑宇轩,周风华,李玉龙. 弹性SHPB试件内部纵向应力波传播及所产生的横向约束应力. 固体力学学报. 2023(06): 815-830 .
    4. 叶想平,南小龙,段志伟,俞宇颖,蔡灵仓,刘仓理. 样品粗糙度对材料SHPB动态压缩性能的影响. 爆炸与冲击. 2022(01): 53-59 .
    5. 彭克锋,郑志军,周风华,虞吉林. 密度梯度柱壳链的弹性波传播特性研究. 力学学报. 2022(08): 2131-2139 . 本站查看
    6. 戴东利,杨汉青,杨翔,何伟. 基于波动理论的结构损伤识别研究进展. 地震工程学报. 2022(05): 1001-1008 .
    7. 彭克锋,崔世堂,潘昊,郑志军,虞吉林. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解. 爆炸与冲击. 2021(01): 26-36 .
    8. 赵希宁,杨晓东,张伟. 含电学边界的压电层合梁的非线性弯曲波. 力学学报. 2021(04): 1124-1137 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1456) PDF downloads (212) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return