Processing math: 100%
EI、Scopus 收录
中文核心期刊
Mo Huangrui, An Yi, Liu Qingquan. INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079
Citation: Mo Huangrui, An Yi, Liu Qingquan. INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1310-1320. DOI: 10.6052/0459-1879-19-079

INFLUENCE OF THE LENGTH OF HIGH-SPEED TRAIN ON THE FAR-FIELD AEROACOUSTICS CHARACTERISTICS

  • Received Date: March 02, 2019
  • The estimation of the aeroacoustic characteristics of the high-speed train is of great importance in train design. Due to the extreme slender shape of the full marshaling of the train (generally 8 or 16 cars), the calculation of the far filed acoustics involves massive consumption of the CPU time which even makes the optimization unpractical. This paper numerically studies the influence of train length on its aeroacoustics characteristics by considering the acoustic contribution car by car. The nonlinear acoustic solver (NLAS) is used to calculate the acoustic source at the acoustic surface, and the FW-H analogy method is used to integrate on the acoustic surface to obtain the far-field results. Three different marshaling of the trains, i.e. 3 cars, 4 cars, and 6 cars, are studied and compared. The far-field acoustic level and frequency profile along the train is obtained. The results show that for different middle cars, the far-field acoustic profile along the length is very similar in both quantity and shape, except the offset in position. For the cars in the same position of different marshaling, both the sound pressure level distribution and the frequency profile are also very close to each other. Thus the key aeroacoustics characteristics of a long marshaling train could be estimated with a much smaller marshaling such as 3 cars. With the superposition of the acoustic surface data from short marshaling simulation, the aeroacoustics characteristics of long marshaling could be obtained. The comparison of the superposed results and the results calculated directly from long marshaling simulation is close enough for engineering use. This demonstrates that the proposed novel approach for estimating aeroacoustics of long marshaling could not only reduce the computational cost significantly but also be as accurate as direct simulation. This paper might provide a handy tool for engineering practice in this region.
  • [1] Talotte C . Aerodynamic noise: A critical survey. Journal of Sound and Vibration, 2000,231(3):549-562
    [2] Mellet C, Létourneaux F, Poisson F , et al. High speed train noise emission: Latest investigation of the aerodynamic/rolling noise contribution. Journal of sound and vibration, 2006,293(3):535-546
    [3] 杨国伟, 魏宇杰, 赵桂林 等. 高速列车的关键力学问题. 力学进展, 2015,45:201507
    [3] ( Yang Guowei, Wei Yujie, Zhao Guilin , et al. Research progress on the mechanics of high speed rails. Advances in Mechanics, 2015,45:201507(in Chinese))
    [4] 孙振旭, 姚永芳, 杨焱 等. 国内高速列车气动噪声研究进展概述. 空气动力学学报, 2018,36(3):29-41
    [4] ( Sun Zhenxu, Yao Yongfang, Yang Yan , et al. Overview of the research progress on aerodynamic noise of high speed trains in China. Acta Aerodynamica Sinica, 2018,36(3):29-41(in Chinese))
    [5] 晋永荣, 陈晓丽 . 日本新干线列车噪声声源分布及主动降噪实车试验研究综述. 现代信息科技, 2019,3(3):176-177, 179
    [5] ( Jin Yongrong, Chen Xiaoli . Overview of research on noise source distribution and active noise reduction of Shinkansen Trains in Japan. Modern Informationn Technology, 2019,3(3):176-177, 179(in Chinese))
    [6] 谭晓明, 杨志刚, 吴晓龙 等. CIT500车外噪声源频谱分解模型的试验研究. 铁道学报, 2017,39(7):32-37
    [6] ( Tan Xiaoming, Yang Zhigang, Wu Xiaolong , et al. Experimental study on frequency spectrum component model of noise source outside CIT500 train. Journal of the China Railway Society, 2017,39(7):32-37(in Chinese))
    [7] Yokoshima S, Morihara T, Sato T , et al. Combined effects of high-speed railway noise and ground vibrations on annoyance. International Journal of Environmental Research & Public Health, 2017,14(8):845
    [8] Kitagawa T, Nagakura K . Aerodynamic noise generated by shinkansen cars. Journal of Sound and Vibration, 2000,231(3):913-924
    [9] Suzuki M, Ikeda M, Yoshida K . Study on numerical optimization of cross-sectional panhead shape for high-speed train. Journal of Mechanical Systems for Transportation and Logistics, 2008,1:100-110
    [10] 高阳, 李启良, 陈羽 等. 高速列车头型近场与远场噪声预测. 同济大学学报:自然科学版, 2019,47(1):124-129
    [10] ( Gao Yang, Li Qiliang, Chen Yu , et al. Prediction of near field and far field noise for high-speed train head shape. Journal of Tongji University(Natural Science), 2019,47(1):124-129(in Chinese))
    [11] 刘晓日, 罗江泽, 赵哲 等. 车头长度对高速列车气动特性与声场特性影响的数值分析及降噪研究. 中国铁道科学, 2018,39(5):88-96
    [11] ( Liu Xiaori, Luo Jiangze, Zhao Zhe , et al. Numerical analysis of influence of head length on aerodynamic and sound field characteristics of g-series high-speed train and research on noise reduction. China Railway Science, 2018,39(5):88-96(in Chinese))
    [12] 刘国庆, 杜健, 刘加利 等. 车端风挡类型对高速列车气动噪声影响规律的研究. 噪声与振动控制, 2018,38(2):87-90
    [12] ( Liu Guoqing, Du Jian, Liu Jiali , et al. Investigation on the influence of inter-car windshield types on the aerodynamic noise of high speed trains. Noise and Vibration Control, 2018,38(2):87-90(in Chinese))
    [13] Zhu JY, Hu ZW, Thompson DJ . The effect of a moving ground on the flow and aerodynamic noise behaviour of a simplified high-speed train bogie. International Journal of Rail Transportation, 2017,5(2):110-125
    [14] Zhang YD, Zhang JY, Tian LI , et al. Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph. Science China Technological Sciences, 2017,60(4):75-89
    [15] Sun X, Han X . Numerical modeling and investigation on aerodynamic noise characteristics of pantographs in high-speed trains. Complexity, 2018(6):1-12
    [16] 刘加利, 于梦阁, 田爱琴 等. 高速列车受电弓气动噪声特性研究. 机械工程学报, 2018,54(4):231-237
    [16] ( Liu Jiali, Yu Mengge, Tian Aiqin , et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train. Journal of Mechanical Engineering, 2018,54(4):231-237(in Chinese))
    [17] 董继蕾 . 高速动车组受电弓气动噪声数值仿真分析. 噪声与振动控制, 2018,38(s1):46-50
    [17] ( Dong Jilei . Numerical simulation analysis of aerodynamic noise for pantographs of high-speed trains. Noise and Vibration Control, 2018,38(s1):46-50(in Chinese))
    [18] 刘加利, 张继业, 张卫华 . 高速列车车头的气动噪声数值分析. 铁道学报, 2011,33(9):19-26
    [18] ( Liu Jiali, Zhang Jiye, Zhang Weihua . Numerical analysis on aerodynamics noise of the high-speed train head. Journal of the China Railway Society, 2011,33(9):19-26(in Chinese))
    [19] 肖友刚, 康志成 . 高速列车车头曲面气动噪声的数值预测. 中南大学学报, 2008,39(6):1267-1272
    [19] ( Xiao Yougang, Kang Zhi-cheng . Numerical prediction of aerodynamics noise radiated from high-speed train head surface. Journal of Central South University. 2008,39(6):1267-1272(in Chinese))
    [20] 孙振旭, 宋婧婧, 安亦然 . CRH3型高速列车气动噪声数值模拟研究. 北京大学学报, 2012,48(5):701-711
    [20] ( Sun Zhenxu, Song Jingjing, An Yiran , Numerical simulation of aerodynamics noise generated by CRH3 high-speed train. Acta Scientiarum Naturalium Universitatis Pekinensis, 2012,48(5):701-711(in Chinese))
    [21] Yu HH, Li JC, Zhang HQ . On aerodynamic noises radiated by the pantograph system of high-speed trains. Acta Mechanica Sinica, 2013,29(3):399-410
    [22] 安翼, 莫晃锐, 刘青泉 . 高速列车头型长细比对气动噪声的影响. 力学学报, 2017,49(5):985-996
    [22] ( An Yi, Mo Huangrui, Liu Qingquan . Study on the influence of the nose slenderness ratio of high-speed train on the aerodynamic noise. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):985-996(in Chinese))
    [23] 袁磊, 李人宪 . 高速列车气动噪声及影响. 机械工程与自动化, 2013,180(5):31-35
    [23] ( Yuan Lei, Li Renxian , Aerodynamics noise of high-speed train and its impact. Mechanical Engineering & Automaytion, 2013,180(5):31-35(in Chinese))
    [24] Yang Y, Yang GW . A numerical study on aerodynamics noise sources of high-speed train. Proceedings of the 1st IWHIR, 2012(2):107-116
    [25] 张军, 黄艳艺, 兆文忠 . 高速列车气动噪声数值仿真. 大连交通大学学报, 2012,33(4):1-5
    [25] ( Zhang Jun, Huang Yanyi, Zhao Wenzhong . Research on numerical simulation of aerodynamics noise for high-speed train. Journal of Dalian Jiaotong University, 2012,33(4):1-5(in Chinese))
    [26] 张军, 孙帮成, 郭涛 等. 高速列车整车气动噪声及分布规律研究. 铁道学报, 2015,37(2):10-17
    [26] ( Zhang Jun, Sun Bangcheng, Guo Tao , et al. Research on aerodynamics noise radiated from whole body surface of high-speed train and its distribution. Journal of the China Railway Society, 2015,37(2):10-17(in Chinese))
    [27] 余培汛, 杨海, 潘凯 等. 结合并行策略与距离减缩法的搜索算法及其在CAA中的应用. 计算力学学报, 2018,35(2):255-260
    [27] ( Yu Peixun, Yang Hai, Pan Kai , et al. A search algorithm coupling parallel strategy and distance decreasing method applied to CAA. Chinese Journal of Computational Mechanics, 2018,35(2):255-260(in Chinese))
    [28] Pascioni KA, Cattafesta LN . An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities. Journal of Sound & Vibration}, 2018,429:224-244
    [29] Zhang Y, Zhang J, Tian Li . Contribution analysis of aerodynamic noise of high-speed train. Journal of Traffic & Transportation Engineering, 2017(4):78-88
    [30] Batten P, Ribaldone E, Casella M , et al. Towards a generalized non-linear acoustics solver. AIAA-2004-3001,Proceeding of 10thAIAA/CEAS Aeroacoustics Conference,2004, May 10-12, Manchester, UK
    [31] Batten P, Goldberg U , Chakravarthy S. Reconstructed sub-grid methods for acoustics predictions at all Reynolds numbers. AIAA Paper 2002- 2511, 2002
    [32] Ffowcs Williams JE, Hawkings DL . Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London, Series A, 1969,264:321-342
    [33] Farassat F . Discontinuities in aerodynamics and aeroacoustics: The concept and applications of generalized derivatives. Journal of Sound and Vibration, 1977,55(2):165-193
    [34] Powell A . Theory of vortex sound. The Journal of the Acoustical Society of America, 2005,36(1):177-195
  • Related Articles

    [1]Fan Shengzhe, Sun Ruqi, Zhao Xuan, Wong Waion, Cheng Li. H DESIGN AND EXPERIMENTAL STUDY OF TWO TYPES OF DYNAMIC VIBRATION ABSORBERS WITH TUNABLE DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3324-3332. DOI: 10.6052/0459-1879-24-260
    [2]Guo Yuan, Fu Zhuojia, Min Jian, Liu Xiaoting, Zhao Haitao. CURRICULUM-TRANSFER-LEARNING BASED PHYSICS-INFORMED NEURAL NETWORKS FOR LONG-TIME SIMULATION OF NONLINEAR WAVE PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 763-773. DOI: 10.6052/0459-1879-23-457
    [3]Guo Yi, Guo Dilong, Yang Guowei, Liu Wen. MOVING MODEL ANALYSIS OF THE SLIPSTREAM OF A LONG GROUPING HIGH-SPEED TRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105-114. DOI: 10.6052/0459-1879-20-226
    [4]An Yi, Mo Huangrui, Liu Qingquan. STUDY ON THE INFLUENCE OF THE NOSE SLENDERNESS RATIO OF HIGH-SPEED TRAIN ON THE AERODYNAMIC NOISE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 985-996. DOI: 10.6052/0459-1879-17-126
    [5]Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
    [6]Tong Zhao Longxiang Chen Guoping Cai. Theoretical and experimental studies of H∞ control for a flexible plate with time delay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1043-1053. DOI: 10.6052/0459-1879-2011-6-lxxb2011-076
    [7]Yuezhang Xia, Keqin Zhu. A study of linear long wave attenuation over a Maxwell mud bed[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 343-349. DOI: 10.6052/0459-1879-2010-3-2009-151
    [8]Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240
    [9]Minimum H∞ norm estimation of interval systems by an eigenvalue perturbation method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 757-761. DOI: 10.6052/0459-1879-2004-6-2003-396
    [10]WU CHUNG-HUA. THE AERODYNAMIC PROBLEM OF RADIALLY LONG BLADES IN TURBOMIACHINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1957, 1(1): 15-48. DOI: 10.6052/0459-1879-1957-1-1957-010
  • Cited by

    Periodical cited type(9)

    1. 张治乾,于培师,赵军华,赵凡. 环境风对高速列车气动噪声特性的影响分析. 应用声学. 2024(03): 533-541 .
    2. 李林,王达,吴生提,黄志华,李登科. 基于消声器的列车真空断路器气动噪声降噪设计. 机械设计. 2024(11): 186-191 .
    3. 王世浚,朱雷威,孙玉玺,付善强,张保成,赵波. 高速磁浮列车近场气动特性及其诱导噪声的数值仿真研究. 摩擦学学报. 2023(01): 83-91 .
    4. 袁磊,冉均均. 基于CLES模型的风扇气动噪声数值模拟分析方法. 微型电脑应用. 2022(05): 57-61 .
    5. 吴雨薇,高建勇,杨志刚. TR08磁浮列车辐射气动噪声特征的仿真研究. 铁道科学与工程学报. 2022(10): 2794-2803 .
    6. 丁叁叁,陈大伟,刘加利. 中国高速列车研发与展望. 力学学报. 2021(01): 35-50 . 本站查看
    7. 张卫华. 高速列车服役模拟建模与计算方法研究. 力学学报. 2021(01): 96-104 . 本站查看
    8. 闫春丽. 基于CFD方法的汽车气动噪声特性分析与研究. 液压气动与密封. 2021(04): 44-47 .
    9. 朱剑月,张清,徐凡斐,刘林芽,圣小珍. 高速列车气动噪声研究综述. 交通运输工程学报. 2021(03): 39-56 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1798) PDF downloads (253) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return