EI、Scopus 收录
中文核心期刊
Xiong Xun, Wang Zhu, Zheng Yuxuan, Zhou Fenghua, Xu Zhen. NUMERICAL SIMULATIONS OF TAYLOR IMPACT EXPERIMENTS OF QUARTZ GLASS BARS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1082-1090. DOI: 10.6052/0459-1879-19-017
Citation: Xiong Xun, Wang Zhu, Zheng Yuxuan, Zhou Fenghua, Xu Zhen. NUMERICAL SIMULATIONS OF TAYLOR IMPACT EXPERIMENTS OF QUARTZ GLASS BARS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1082-1090. DOI: 10.6052/0459-1879-19-017

NUMERICAL SIMULATIONS OF TAYLOR IMPACT EXPERIMENTS OF QUARTZ GLASS BARS

  • Received Date: January 11, 2019
  • The Taylor impact experiments of quartz glass bar were simulated by using a discrete element method (DEM) approach. The simulations provided detailed failure process of the glass bar: at the impact end, the bar failed in the form of compressive failure wave; at the free end, dense tensile spallation failure occurs. The analysis showed that the spallation is the result of the interaction between the chasing unloading waves caused by the rapid decrease of stress in the failure wave front, and the incoming unloading wave caused by the reflection of the elastic compression wave front at the free end. With the impact velocity increasing, the size of the compressive failure zone increases at the impact end, and the spallation failure zone decreases at the free end. Furthermore, the structural fronts and their propagation velocity of the compressive failure zone were investigated. It was found that the "failure front" in fact was a transition zone from dense crack region (the high damage region, HDZ) to sparse crack region (the low damage zone, LDZ). It was found that the propagation velocity LDZ front is basically the same as the elastic wave velocity, which is a constant. However, the HDZ front velocity decreases as it propagates. The average velocity of the HDZ front increases with the increasing of the impact velocity, and may approach the limit value of elastic wave velocity. In experiments, people usually reports the high-speed video observations of "failure waves" in glass bar after impact, which are actually the front of the HDZ, as the dense cracks formed the HDZ reflect lights to make the region bright and observable.
  • [1] Rasorenov SV, Kanel GI, Fortov VE , et al. The fracture of glass under high-pressure impulsive loading. High Pressure Research, 1991,6(4):225-232
    [2] 赵剑衡, 孙承纬, 段祝平 . 冲击压缩下玻璃等脆性材料中失效波的研究进展. 物理学进展, 2001,21(2):157-175
    [2] ( Zhao Jianhen, Sun Chengwei, Duan Zhuping . Progress in the study of failure waves in glass sample under shock wave loading. Progress in Physics, 2001,21(2):157-175 (in Chinese))
    [3] Bless SJ, Brar NS, Kanel G , et al. Failure waves in glass. Journal of the American Ceramic Society, 1992,75(4):1002-1004
    [4] Brar NS, Bless SJ, Rosenberg Z . Impact-induced failure waves in glass bars and plates. Applied Physics Letters, 1991,59(26):3396-3398
    [5] Kanel GI, Rasorenov SV, Fortov VE . The failure waves and spallations in homogeneous brittle materials. Shock Compression of Condensed Matter-1991, 1992: 451-454
    [6] Bourne NK, Rosenberg Z, Field JE . High-speed photography of compressive failure waves in glasses. Journal of Applied Physics, 1995,78(6):3736-3739
    [7] Brar N, Rosenberg Z, Bless S . Spall strength and failure waves in glass. Journal de Physique IV (Proceedings), 1991,1(C3) DOI: 10.1051/jp4:1991389
    [8] Horacio DE, Yueping X, Brar NS . Micromechanics of failure waves in glass: II, Modeling. Journal of the American Ceramic Society, 1997,80(8):2074-2085
    [9] 赵剑衡, 孙承玮, 段祝平 等. 玻璃样品表面对失效波萌生的影响. 力学学报, 2001,33(6):834-838
    [9] ( Zhao Jianhen, Sun Chengwei, Duan Zhuping , et al. Effect of impacted surface of k9 glass sample on formation of failure wave. Chinese Journal of Theoretical and Applied Mechanics, 2001,33(6):834-838 (in Chinese))
    [10] 张延耿, 段卓平, 皮爱国 等. Soda lime玻璃材料中失效波形成和传播研究. 高压物理学报, 2012,26(3):241-250
    [10] ( Zhang Yangen, Duan Zhuoping, Pi Aiguo , et al. Studies on formation and propagation of failure waves in soda-lime glass. Chinese Journal of High Pressure Physics, 2012,26(3):241-250 (in Chinese))
    [11] Murray NH, Bourne NK, Field JE , et al. Symmetrical Taylor impact of glass bars// American Institute of Physics, 1998
    [12] Radford DD, Willmott GR, Walley SM , et al. Failure mechanisms in ductile and brittle materials during Taylor impact. Journal De Physique IV, 2003,110(1):687-692
    [13] Radford DD, Willmott GR, Field JE . The effect of structure on failure front velocities in glass rods// CP706, Shock Compression of Condensed Matter, American Institute of Physics, 2004
    [14] Willmott GR, Radford DD . Taylor impact of glass rods. Journal of Applied Physics, 2005,97(9):093522
    [15] Potyondy DO, Cundall PA . A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 2004,41(8):1329-1364
    [16] 熊迅, 李天密, 马棋棋 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报, 2018,50(3):622-632
    [16] ( Xiong Xun, Li Tianmi, Ma Qiqi , et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):622-632 (in Chinese))
    [17] 王玉芬, 刘连城 . 石英玻璃. 北京: 化学工业出版社, 2007
    [17] ( Wang Yufen, Liu Liancheng. Quartz Glass. Beijing: Chemical Industry Press, 2007 (in Chinese))
    [18] 王承遇, 卢琪, 陶瑛 . 玻璃的脆性(一). 玻璃与搪瓷, 2011,39(6):37-43
    [18] ( Wang Chengyu, Lu Qi, Tao Ying . Brittleness of glass. Glass & Enamel, 2011,39(6):37-43 (in Chinese))
    [19] 徐振, 熊迅, 李天密 等. 冲击压缩下石英玻璃柱的破坏实验研究和数值模拟. 宁波大学学报(理工版), 2018,31(2):37-43
    [19] ( Xu Zhen, Xiong Xun, Li Tianmi . Experimental and numerical investigations on failure of quartz glass rod under impact compression. Journal of Ningbo University (NSEE) , 2018,31(2):37-43 (in Chinese))
    [20] Jannotti P, Subhash G . Impact-induced deformation mechanisms in unstrengthened and chemically strengthened glass bars. International Journal of Impact Engineering, 2015,75:53-64
    [21] Anderson CE Jr, Holmquist TJ . Application of a computational glass model to compute propagation of failure from ballistic impact of borosilicate glass targets. International Journal of Impact Engineering, 2013,56(6):2-11
    [22] Pandolfi A, Li B, Ortiz M . Modeling failure of brittle materials with eigenerosion// Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures, EURO-C2014, St. Anton and Alberg, Austria, March 25-27,
    [23] 赵剑衡, 谭显祥, 孙承纬 等. 用高速阴影技术研究K9玻璃中的失效波. 爆炸与冲击, 2001,21(2):150-156
    [23] ( Zhao Jianhen, Tan Xianxiang, Sun Chengwei , et al. Investigations of failure waves in K9 glass using shadowgraph. Explosion and Shock Waves, 2001,21(2):150-156 (in Chinese))
  • Related Articles

    [1]Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297
    [2]Cui Da, Zhang Minghao, Li Daokui. DESIGN AND EXPERIMENTAL VERIFICATION OF COMPOSITE BEND-TWIST COUPLED STRUCTURE BASED ON ASYMMETRIC STACKING SEQUENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2888-2901. DOI: 10.6052/0459-1879-24-230
    [3]Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187
    [4]Zhao Huan. ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 223-238. DOI: 10.6052/0459-1879-22-391
    [5]Deng Kaiwen, Chen Haixin. HYBRID OPTIMIZATION ALGORITHM BASED ON DIFFERENTIAL EVOLUTION AND RBF RESPONSE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. DOI: 10.6052/0459-1879-16-285
    [6]Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036
    [7]Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532
    [8]Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422
    [9]Jian Wang, Guozhong Zhao, Hongwu Zhang. Shape control and design optimization of the piezoelectric curved shell structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 618-625. DOI: 10.6052/0459-1879-2007-5-2006-508
  • Cited by

    Periodical cited type(9)

    1. 李凯,杨静媛,高传强,叶坤,张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报. 2023(02): 299-308 . 本站查看
    2. 黄垲轩 ,丁喆 ,张严 ,李小白 . 高承载梯度分层点阵结构的拓扑优化设计方法. 力学学报. 2023(02): 433-444 . 本站查看
    3. 苗京涛,李河宗,黄素霞. 3D打印金属血管支架结构设计和力学性能测试. 特种铸造及有色合金. 2023(05): 619-623 .
    4. 李盼,冯静,许博轩,王志超,房德磊,曹琳,张峻霞. 冠状动脉血管支架的研究现状. 医疗卫生装备. 2023(06): 92-100 .
    5. 陈耀,叶王杰,史佳遥,冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报. 2022(07): 2019-2029 . 本站查看
    6. 魏云波,赵丹阳,王敏杰,李红霞. 高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析. 中国机械工程. 2020(09): 1098-1107+1130 .
    7. 王侃,李金亮,王景华,张磊安. 基于单粒子寻优算法的铺层装备支架梁结构优化设计. 可再生能源. 2020(12): 1621-1625 .
    8. 张宏辉,冯海全,李治国,韩青松. 镁合金冠脉支架支撑性能分析及其优化. 医用生物力学. 2019(01): 14-20 .
    9. 李笑,李明. 折纸及其折痕设计研究综述. 力学学报. 2018(03): 467-476 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1515) PDF downloads (134) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return