EI、Scopus 收录
中文核心期刊
Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426
Citation: Cao Dongxing, Ma Hongbo, Zhang Wei. ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1148-1155. DOI: 10.6052/0459-1879-18-426

ENERGY HARVESTING ANALYSIS OF A PIEZOELECTRIC CANTILEVER BEAM WITH MAGNETS FOR FLOW-INDUCED VIBRATION

  • Received Date: December 09, 2018
  • Flow-induced vibration contains tremendous energy. Based on the theory of flow-induced vibration, a kind of flow-induced vibration energy harvester with additional magnetic excitation is designed, and its vibration energy harvesting characteristics are studied theoretically and experimentally. The harvester consists of a piezoelectric cantilever beam, a circular cylinder and magnets. Firstly, based on the Euler-Bernoulli beam theory, the energy functions of the magneto-piezoelectric energy harvester with fluid-induced vibration excitation are derived, and the electromechanical coupling equation is established by using the Hamilton principle. Then, the influence of the system parameters such as the flow velocity, the diameter and length of the circular cylinder, the magnetic parameters and the external resistance on the vibration characteristics and output voltage of the piezoelectric energy harvester. The results show that the vibration amplitude of the piezoelectric harvester produces vortex-induced vibration at low flow velocity and output the maximum voltage; the magnetic force can reduce the resonance frequency of the structure and broaden the bandwidth harvester. Thus, the magnetized piezoelectric harvester is more suitable for low-speed flow environment than the non-magnetized piezoelectric harvester. The experimental results agree well with the numerical results, which verifies the results of the theoretical analysis of the magneto-piezoelectric energy harvester.
  • [1] Erturk A, Hoffmann J, Inman DJ . A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009,94(25):254102
    [2] Ooi BL, Gilbert JM, Aziz ARA . Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications. Acta Mechanica Sinica, 2016,32(4):670-683
    [3] Sun S, Cao SQ . Analysis of chaos behaviors of a bistable piezoelectric cantilever power generation system by the second-order Melnikov function. Acta Mechanica Sinica, 2017,33(1):200-207
    [4] Zhou S, Zuo L . Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Communications in Nonlinear Science and Numerical Simulation, 2018,61:271-284
    [5] Zhou S, Cao J, Inman DJ , et al. Broadband tristable energy harvester: Modeling and experiment verification. Applied Energy, 2014,133:33-39
    [6] Zou H, Zhang W, Li W , et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments. Journal of Sound and Vibration, 2018,416:55-79
    [7] Zou H, Zhang W, Li W , et al. Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester. Smart Materials and Structures, 2017,26(11):115023
    [8] Lu Z, Li K, Ding H , et al. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics, 2018,40(1):167-180
    [9] Liu D, Xu Y, Li JL . Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Solitons & Fractals, 2017,104:806-812
    [10] Jiang WA, Chen LQ, Ding H . Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dynamics, 2016,85(4):2507-2520
    [11] Cao DX, Leadenham S, Erturk A . Internal resonance for nonlinear vibration energy harvesting. European Physical Journal-Special Topics, 2015,224(14-15):2867-2880
    [12] Fang F, Xia G, Wang J . Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations. Acta Mechanica Sinica, 2018,34(3):561-577
    [13] Wu N, Wang Q, Xie XD . Ocean wave energy harvesting with a piezoelectric coupled buoy structure. Appl Ocean Res, 2015,50:110-118
    [14] Michelin S, Doar O . Energy harvesting efficiency of piezoelectric flags in axial flows. J Fluid Mech, 2013,714(1):489-504
    [15] Gao X, Shih WH, Wan YS . Flow energy harvesting using piezoelectric cantilevers with cylindrical extension. IEEE T Ind Electron, 2013,60(3):1116-1118
    [16] 宋汝君, 单小彪, 李晋哲 等. 压电俘能器涡激振动俘能的建模与实验研究. 西安交通大学学报, 2016,50(2):55-60,79
    [16] ( Song Rujun, Shan Xiaobian, Li Jinzhe , et al. Modeling and experimental study of piezoelectric energy harvester under vortex-induced vibration. Journal of Xi'an Jiaotong University. 2016,50(2):55-60, 79 (in Chinese))
    [17] Dai HL, Abdelkefi A, Wang l . Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dynam, 2014,77(3):967-981
    [18] 阚君武, 富佳伟, 王淑云 等. 涡激振动式微型流体俘能器的研究现状与展望. 光学精密工程, 2017,25(6):1502-1512
    [18] ( Kan Junwu, Fu Jiawei, Wang Shuyun , et al. Research status and prospect of vortex-induced vibration micro-fluid energy harvester. Optics and Precision Engineering. 2017,25(6):1502-1512 (in Chinese))
    [19] 练继建, 燕翔, 刘昉 . 流致振动能量利用的研究现状与展望. 南水北调与水利科技, 2018,16(1):176-189
    [19] ( Lian Jijian, Yan Xiang, Liu Fang . Development and prospect of study on the energy harness of flow-induced motion. South to North Water Transfers and Water Science & Technology, 2018,16(1):176-189 (in Chinese))
    [20] Weinstein LA, Cacan MR, SO PM , et al. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows. Smart Materials & Structures, 2012, 21(21): 45003-12(10)
    [21] Zhang M, Wang JL . Experimental study on piezoelectric energy harvesting from vortex-Induced vibrations and wake-induced vibrations. Journal of Sensors, 2016: 2673292
    [22] Ding L, Zhang L, Wu CM , et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections. Energy Conversion And Management, 2015,91:416-426
    [23] Nicolaskofman L . The origin of hysteresis in the flag instability. Journal of Fluid Mechanics, 2012,691(1):583-593
    [24] Vicente-ludlam D, Barrero-gil A, Velazquez A . Optimal electromagnetic energy extraction from transverse galloping. Journal of Fluids & Structures, 2014,51:281-291
    [25] Javed U, Abdelkefi A, Akhtar I . An improved stability characterization for aeroelastic energy harvesting applications. Communications in Nonlinear Science & Numerical Simulation, 2016,36:252-265
    [26] Pobering S, Schwesinger N . A novel hydropower harvesting device //Proceedings of the International Conference on Mems, Nano and Smart Systems, F, 2004
    [27] Xie XD, Wang Q, Wu N . Energy harvesting from transverse ocean waves by a piezoelectric plate. International Journal of Engineering Science, 2014,81(81):41-48
    [28] Shan X, Song R, Liu B , et al. Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex. Ceramics International, 2015,41:S763-S7
    [29] Shan X, Deng J, Song R , et al. A piezoelectric energy harvester with bending-torsion vibration in low-speed water. Applied Sciences, 2017,7(2):116
    [30] 宋汝君, 单小彪, 范梦龙 等, 涡激振动型水力复摆式压电俘能器的仿真与实验研究. 振动与冲击, 2017,36(19):78-83
    [30] ( Song Rujun, Shan Xiaobiao, Fan Menglong , et al. Simulations and experiments on a hydrodynamic compound pendulum piezoelectric energy harvester accompanied with vortex-induced vibration. Journal of Vibration and Shock, 2017,36(19):78-83 (in Chinese))
    [31] Tang D, Zhao M, Dowell EH . Inextensible beam and plate theory: Computational analysis and comparison with experiment. Journal of Applied Mechanics, 2014,81(6):061009
    [32] Huang YH, Hsu HT . Solid-liquid coupled vibration characteristics of piezoelectric hydroacoustic devices. Sensors & Actuators A Physical, 2016,238:177-195
    [33] Basak S, Raman A, Garimella SV . Hydrodynamic loading of microcantilevers vibrating in viscous fluids. Journal of Applied Physics, 2006,99(11):2454-198
    [34] Abdelkefi A, Barsallo N . Nonlinear analysis and power improvement of broadband low-frequency piezomagnetoelastic energy harvesters. Nonlinear Dynam, 2016,83(1-2):1-16
  • Related Articles

    [1]Li Zhiyuan, Lyu Wenbo, Ma Xiaoqing, Zhou Shengxi. A MAGNETIC SLIDING AIRFOIL FLUTTER ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2146-2155. DOI: 10.6052/0459-1879-23-330
    [2]Zhou Xue, Wang Lin, Chen Wei, Yang Wenzheng, Guo Zilong. LARGE DEFORMATION OF HARD MAGNETIC SOFT BEAM WITH VARIABLE CROSS SECTION UNDER GRADIENT MAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1699-1710. DOI: 10.6052/0459-1879-23-138
    [3]Zhang Ying, Wang Wei, Cao Junyi. AN ACCURATE MODELLING METHOD OF MAGNETIC FORCE IN MULTI-STABLE ENERGY HARVESTING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2984-2995. DOI: 10.6052/0459-1879-21-446
    [4]Zou Hongxiang, Guo Dinghua, Gan Chongzao, Tang Shuguang, Yuan Jun, Wei Kexiang, Zhang Wenming. DESIGN AND DYNAMIC ANALYSIS OF MAGNETIC COUPLING ROAD ENERGY HARVESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949. DOI: 10.6052/0459-1879-21-374
    [5]Hao Le, Chen Long, Ni Mingjiu. DIRECT NUMERICAL SIMULATIONS ON THE TURBULENT FLOW PAST A CONFINED CIRCULAR CYLINDER WITH THE INFLUENCE OF THE STREAMWISE MAGNETIC FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1645-1654. DOI: 10.6052/0459-1879-20-217
    [6]Tang Ye, Wang Tao, Ding Qian. STABILITY ANALYSIS ON PARAMETRIC VIBRATION OF PIEZOELECTRIC ROTATING CANTILEVER BEAM WITH ACTIVE CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1872-1881. DOI: 10.6052/0459-1879-19-211
    [7]Yaohui Chen, Baochun Fan, Benmou Zhou, Zhihua Chen, Hui Zhang, Hongzhi Li. Electro-magnetic control of hydrofoil wake[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 121-127. DOI: 10.6052/0459-1879-2008-1-2006-015
    [8]Hongliang Dai, Yiming Fu, J.H. Yang. Electromagnetoelastic behaviors of functionally graded piezoelectric[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 55-63. DOI: 10.6052/0459-1879-2007-1-2006-127
    [9]Fei QinDongmei Yan, Xiaofeng Zhang. Perturbed magnetic fields generated by deformation of structures in earth magnetic field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 799-806. DOI: 10.6052/0459-1879-2006-6-2005-246
    [10]Piezoelectric Cantilever Actuator Subjected To A Linearly Distributed Loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 305-310. DOI: 10.6052/0459-1879-2004-3-2002-039
  • Cited by

    Periodical cited type(19)

    1. 张飞. 基于压电微悬臂梁的煤矿巷道风速检测仿真研究. 煤矿机械. 2023(03): 55-57 .
    2. 张野,王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报. 2023(10): 2199-2216 . 本站查看
    3. 张晓宇,张旭辉. 矿用压电俘能器建模与俘能特性研究. 力学学报. 2023(10): 2239-2251 . 本站查看
    4. 施海天,魏莎,丁虎,陈立群. Z型梁结构压电式能量采集性能分析. 振动与冲击. 2022(04): 93-100 .
    5. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    6. 吴子英,常宇琛,赵伟,李永越,刘丽兰. 三稳态电磁式涡激振动俘能装置发电性能研究. 振动与冲击. 2022(13): 26-33 .
    7. 钱有华,陈娅昵. 双稳态压电俘能器的簇发振荡与俘能效率分析. 力学学报. 2022(11): 3157-3168 . 本站查看
    8. 董博见,徐鹏,李海涛. 驰振和基振复合作用下的双稳态能量采集系统动力学分析. 中北大学学报(自然科学版). 2021(01): 26-33+39 .
    9. 卢一铭,曹东兴,申永军,陈许敏. 局域共振型声子晶体板缺陷态带隙及其俘能特性研究. 力学学报. 2021(04): 1114-1123 . 本站查看
    10. 常宇琛,吴子英. 考虑线性/非线性恢复力的流致振动能量捕获技术研究进展. 机械设计. 2021(09): 1-14 .
    11. 陈楠,刘京睿,魏廷存. 面向压电振动能量俘获的电能管理电路综述. 力学学报. 2021(11): 2928-2940 . 本站查看
    12. 田海港,单小彪,张居彬,隋广东,谢涛. 翼型颤振压电俘能器的输出特性研究. 力学学报. 2021(11): 3016-3024 . 本站查看
    13. 李海涛,曹帆,任和,丁虎,陈立群. 流致振动能量收集的钝头体几何设计研究. 力学学报. 2021(11): 3007-3015 . 本站查看
    14. 张旭辉,陈路阳,陈孝玉,徐冬梅,朱福林,郭岩. 线形-拱形组合梁式三稳态压电俘能器动力学特性研究. 力学学报. 2021(11): 2996-3006 . 本站查看
    15. 刘轩,吴义鹏,裘进浩,季宏丽. 基于反激变压器的压电振动能量双向操控技术. 力学学报. 2021(11): 3045-3055 . 本站查看
    16. 曹东兴,段祥健,张伟. 水流管道压力脉动能量采集器实验研究. 哈尔滨工程大学学报. 2021(08): 1154-1161 .
    17. 张德春,李鹏,梁森,杨翊仁. 受限亚音速气流中倒置悬臂壁板静气弹稳定性的理论及实验研究. 力学学报. 2020(02): 431-441 . 本站查看
    18. 刘星光,唐有绮,周远. 三种典型轴向运动结构的振动特性对比. 力学学报. 2020(02): 522-532 . 本站查看
    27. 曹东兴,丁相栋,张伟,姚明辉. 磁力增强涡激振动压电俘能器仿真及实验. 振动.测试与诊断. 2022(03): 530-536+619 .

    Other cited types(11)

Catalog

    Article Metrics

    Article views (1494) PDF downloads (231) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return