EI、Scopus 收录
中文核心期刊
Liu Jiaying, Zhou Wei, Ma Gang, Li Yiao, Liu Qiwen. CONTACT FABRIC CHARACTERISTICS OF GRANULAR MATERIALS UNDER THREE DIMENSIONAL STRESS PATHS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35. DOI: 10.6052/0459-1879-18-338
Citation: Liu Jiaying, Zhou Wei, Ma Gang, Li Yiao, Liu Qiwen. CONTACT FABRIC CHARACTERISTICS OF GRANULAR MATERIALS UNDER THREE DIMENSIONAL STRESS PATHS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35. DOI: 10.6052/0459-1879-18-338

CONTACT FABRIC CHARACTERISTICS OF GRANULAR MATERIALS UNDER THREE DIMENSIONAL STRESS PATHS

  • Macroscopic mechanical characteristics of granular materials are closely related to the microscopic contact force and fabric. Generally speaking, the strong contact system contributes to the force transmission of internal granular system, and then its corresponding fabric tensor has important influence on the macroscopic stress. Microscopic numerical methods, such as discrete element method, can reproduce the laboratory tests with reasonable macroscopic responses and extract macro- and micro-data conveniently for investigating the underlying mechanism of the granular system. Based on discrete element method (DEM), a series of true triaxial tests for granular materials under constant p and constant b stress paths are carried out, and the evolutions of macro- and micro-mechanical parameters of granular materials, the multiple relationship between three-dimensional fabric tensor and stress tensor and the macro-stress characteristics reflected by strong contact system are studied. The results demonstrate that some macro- and microscopic parameters at the stress peak and critical state in the granular system are independent on the loading path. Non-coaxiality between fabric tensor and stress tensor is observed under three-dimensional stress path, but the evolution of the joint invariant of the two tensors is independent on the 3D loading path. Compared to fabric tensor of weak contact system, the fabric tensor of strong contact system reflects better the characteristics of macroscopic stress tensor. Fabric tensors of strong and weak contact systems contribute differently to the granular macroscopic response. To divide the strong and weak contact system, there is a range for the threshold, however adopting the average contact force is relatively simple and reasonable.
  • [1] 李广信. 高等土力学. 北京: 清华大学出版社, 2004
    [1] (Li Guangxin. Advanced Soil Mechanics.Beijing: Tsinghua University Presss, 2004 (in Chinese))
    [2] 程展林, 丁红顺, 吴良平. 粗粒土试验研究. 岩土工程学报, 2007, 29(8): 1151-1158
    [2] (Cheng Zhanlin, Ding Hongshun, Wu Liangping.Experimental study on mechanical behaviour of granular material. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1151-1158 (in Chinese))
    [3] 黄茂松, 姚仰平, 尹振宇等.土的基本特性及本构关系与强度理论研究进展//中国土木工程学会全国土力学及岩土工程学术大会, 2015
    [3] (Huang Maosong, Yao Yangping, Yin Zhenyu, et al.Progress in the study of elementary mechanical behaviors, constitutive modeling and failure criterion of soils//The 12th National Conference on Soil Mechanics and Geotechnical Engineering of China Civil Engineering Society, 2015 (in Chinese))
    [4] Darve F, Laouafa F.Instabilities in granular materials and application to landslides. Mechanics of Cohesive-frictional Materials, 2000, 5(8): 627-652
    [5] Nicot F, Darve F.A micro-mechanical investigation of bifurcation in granular materials. International Journal of Solids & Structures, 2007, 44(20): 6630-6652
    [6] Nicot F, Darve F.The H-microdirectional model: Accounting for a mesoscopic scale. Mechanics of Materials, 2011, 43(12): 918-929
    [7] Small M, Walker D M, Tordesillas A, et al.Characterizing chaotic dynamics from simulations of large strain behavior of a granular material under biaxial compression. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2013, 23(1): 013113
    [8] Zhou W, Liu J, Ma G, et al.Macroscopic and microscopic behaviors of granular materials under proportional strain path: A DEM study. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(18): 2450-2467
    [9] 钱建固, 黄茂松. 轴对称状态下土体剪切带触发形成的分叉理论. 岩土工程学报, 2003, 25(4): 400-404
    [9] (Qian Jiangu, Huang Maosong.Bifurcation of soils at inception of shear band under axisymmetric conditions. Chinese Jounal of Geotechnical Engineering, 2003, 25(4): 400-404 (in Chinese))
    [10] Drescher A, Jong GDJD.Photoelastic verification of a mechanical model for the flow of a granular material. Journal of the Mechanics & Physics of Solids, 1972, 20(5): 337-340
    [11] 王雨婷. 摩擦特性对颗粒材料宏细观力学特征的影响. [硕士论文]. 武汉: 武汉大学, 2017
    [11] (Wang Yuting.The influence of friction properties on macro-mechanical characteristics of granular materials. [Master Thesis]. Wuhan: Wuhan University, 2017 (in Chinese))
    [12] 钱劲松, 陈康为, 张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018, 50(5): 1041-1050
    [12] (Qian Jinsong, Chen Kangwei, Zhang Lei.Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1041-1050 (in Chinese))
    [13] 熊迅,李天密,马棋棋等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报,2018, 50(3): 622-632
    [13] (Xiong Xun, Li Tianmi, Ma Qiqi, et al.Discrete element simulations of the high velocity expension and fragmentation of qartz glass rings. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622-632 (in Chinese))
    [14] 周博, 黄润秋, 汪华斌等. 基于离散元法的砂土破碎演化规律研究. 岩土力学, 2014, 35(9): 2709-2716
    [14] (Zhou Bo, Huang Ruiqiu, Wang Huabin, et al.Study of evolution of sand crushability based on discrete elements method. Rock & Soil Mechanics,} 2014, 35(9): 2709-2716 (in Chinese))
    [15] 刘嘉英, 马刚, 周伟等. 抗转动特性对颗粒材料分散性失稳的影响研究. 岩土力学, 2017, 38(5): 1472-1480
    [15] (Liu Jiaying, Ma Gang, Zhou Wei, et al.Impact of rotation resistance on diffuse failure of granular materials. Rock & Soil Mechanics, 2017, 38(5): 1472-1480 (in Chinese))
    [16] 刘嘉英, 马刚, 周伟等. 基于离散元的颗粒材料三维临界状态与剪胀特性研究. 水利学报, 2017, 48(9): 1107-1117
    [16] (Liu Jiaying, Ma Gang, Zhou Wei, et al.Three-dimensional critical state and dilatancy of granular materials based on DEM. Journal of Hydraulic Engineering, 2017, 48(9): 1107-1117 (in Chinese))
    [17] 周伟, 刘东, 马刚等. 基于随机散粒体模型的堆石体真三轴数值试验研究. 岩土工程学报, 2012, 34(4): 748-755
    [17] (Zhou Wei, Liu Dong, Ma Gang, et al.Numerical simulation of true triaxial tests on mechanical behaviors of rockfill based on stochastic granule model. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 748-755 (in Chinese))
    [18] Zhou W, Ma G, Chang X, et al.Influence of particle shape on behavior of rockfill using a three-dimensional deformable DEM. Journal of Engineering Mechanics, 2013, 139(12): 1868-1873
    [19] Ma G, Zhou W, Ng TT, et al.Microscopic modeling of the creep behavior of rockfills with a delayed particle breakage model. Acta Geotechnica, 2015, 10(4): 481-496
    [20] Ma G, Regueiro RA, Zhou W, et al.Role of particle crushing on particle kinematics and shear banding in granular materials. Acta Geotechnica, 2018(6): 1-18
    [21] Rothenburg L, Bathurst RJ.Analytical study of induced anisotropy in idealized granular materials. Géotechnique, 1989, 39(4): 601-614
    [22] Chantawarangul K.Numerical simulations of three-dimensional granular assemblies. [Ph D Thesis]. University, of Waterloo, 1993
    [23] Zhao J, Guo N.Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique, 2013, 63(8): 695-704
    [24] Radjai F, Jean M, Moreau JJ, et al.Force Distributions in Dense Two-Dimensional Granular Systems. Physical Review Letters, 1996, 77(2): 274-277
    [25] Radjai F, Wolf DE, Jean M, et al.Bimodal character of stress transmission in granular packings. Physical Review Letters, 1998, 80(1): 61-64
    [26] 张敏, 许成顺, 杜修力等. 中主应力系数及应力路径对砂土剪切特性影响的真三轴试验研究. 水利学报, 2015, 46(9): 1072-1079
    [26] (Zhang Min, Xu Chengshun, Du Xiuli, et al.True triaxial experimental research on shear behaviors of sand under different intermediate principal stresses and different stress paths. Journal of Hydraulic Engineering, 2015, 46(9): 1072-1079 (in Chinese))
    [27] Huang X, Hanley KJ, O'Sullivan C, et al. DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granular Matter, 2014, 16(5): 641-655
    [28] Ma G, Chang X L, Zhou W, et al.Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study. Geomechanics & Engineering, 2014, 7(3): 317-333
    [29] Zhou W, Liu J, Ma G, et al. Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotechnica, 2017, 12(3): 1-14
    [30] 姚仰平, 张民生, 万征等. 基于临界状态的砂土本构模型研究. 力学学报, 2018, 50(3): 589-598
    [30] (Yao Yangping,Zhang Minsheng,Wan Zheng,et al.Constitutive model for sand based on the critical state. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598 (in Chinese))
    [31] Li X S, Dafalias Y F.Anisotropic critical state theory: Role of fabric. Journal of Engineering Mechanics, 2012, 138(3): 263-275
    [32] 白冰, 周健. 扫描电子显微镜测试技术在岩土工程中的应用与进展. 电子显微学报, 2001, 20(2): 154-160
    [32] (Bai Bing, Zhou Jian.Application and progress of scanning electron microscopy testing technology in geotechnical engineering. Journal of Chinese Electron Microscopy Society, 2001, 20(2): 154-160 (in Chinese))
    [33] Yang J, Yang ZX, Li XS.Quantifying and modelling fabric anisotropy of granular soils. Géotechnique, 2008, 58(4): 237-248
    [34] Hall SA, Bornert M, Desrues J, et al.Discrete and continuum analysis of localised deformation in sand using X-ray CT and volumetric digital image correlation. Géotechnique, 2010, 60(5): 11-20
    [35] 程展林, 左永振, 丁红顺. CT技术在岩土试验中的应用研究. 长江科学院院报, 2011, 28(3): 33-38
    [35] (Chen Zhanlin, Zuo Yongzhen, Ding Hongshun.Application research of CT technology in geotechnical experiment. Journal of Yangtze River Scientific Research Institute, 2011, 28(3): 33-38 (in Chinese))
    [36] 姜景山, 程展林, 左永振等. 粗粒土CT三轴流变试验研究. 岩土力学, 2014(9): 2507-2514
    [36] (Jiang Jinshan, Cheng Zhanlin, Zuo Youzhen, et al.CT triaxial rheological test on coarse-grained soils. Rock & Soil Mechanics, 2014(9): 2507-2514 (in Chinese))
    [37] 徐小敏. 砂土液化及其判别的微观机理研究. [博士论文]. 杭州: 浙江大学, 2012
    [37] (Xu Xiaomin.Study on the micromechanism of sand liquefaction and its evalution. [PhD Thesis]. Hangzhou: Zhejiang University, 2012 (in Chinese))
    [38] 戴北冰, 杨峻, 周翠英. 松砂不稳定行为的数值模拟研究. 岩土工程学报, 2013, 35(9): 1737-1745
    [38] (Dai Beibing, Yang Jun, Zhou Cuiying.Numerical study on instability behavior of sand. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1737-1745 (in Chinese))
    [39] Sibille L, Hadda N, Nicot F, et al.Granular plasticity, a contribution from discrete mechanics. Journal of the Mechanics & Physics of Solids, 2015, 75: 119-139
    [40] Latham JP, Munjiza A, Garcia X, et al.Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation. Minerals Engineering, 2008, 21(11): 797-805
    [41] Zhou W, Yang L, Ma G, et al.Macro-micro responses of crushable granular materials in simulated true triaxial tests. Granular Matter, 2015, 17(4): 497-509
    [42] Alaei E, Mahboubi A.A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granular Matter, 2012, 14(6): 707-717
    [43] Yuan C, Chareyre B, Darve F.Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume. Advances in Water Resources, 2015, 95: 109-124
    [44] Lade PV, Duncan JM.Elasto-plastic stress-strain theory for cohesionless soil. ASCE Journal of the Geotechnical Engineering Division, 1975, 101(1): 1037-1053
    [45] Matsuoka H, Nakai T.Relationship among Tresca, Mises, Mohr-Coulomb and Matsuoka-Nakai failure criteria. Soils & Foundations, 2008, 25(4): 123-128
    [46] Kanatani K I.Stereological determination of structural anisotropy. International Journal of Engineering Science, 1984, 22(5): 531-546
    [47] Oda M.Fabric tensor for discontinuous geological materials. Soils and Foundations, 1982, 22(4): 96-108
    [48] Li XS, Dafalias YF.Dissipation consistent fabric tensor definition from DEM to continuum for granular media. Journal of the Mechanics and Physics of Solids, 2015, 78: 141-153
  • Related Articles

    [1]Su Yulong, Guo Yunlong, Yuan Yuan, Zheng Jianming. A FRACTAL MODEL OF CONTACT BETWEEN THREE-DIMENSIONAL ROUGH SURFACES WITH SUPERPOSED ASPERITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-17. DOI: 10.6052/0459-1879-24-589
    [2]Wang Gengxiang, Ma Daolin, Liu Yang, Liu Caishan. RESEARCH PROGRESS OF CONTACT FORCE MODELS IN THE COLLISION MECHANICS OF MULTIBODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3239-3266. DOI: 10.6052/0459-1879-22-266
    [3]Hong Xuefei, Zhang Dingli, Fang Huangcheng, Fang Qian, Zhou Mozhen, Hou Yanjuan, Sun Zhenyu. CONTACT MECHANICAL RESPONSE ANALYSIS OF SOIL-FOUNDATION SYSTEM UNDER THE INFLUENCE OF TUNNEL EXCAVATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2298-2311. DOI: 10.6052/0459-1879-21-213
    [4]Fan Peng, Shuangshuang Xie, Hongliang Dai. SINGULAR STRESS FIELD IN VISCOELASTIC CONTACT INTERFACE ENDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 494-502. DOI: 10.6052/0459-1879-18-264
    [5]Fu Li, Hu Hongkui, Fu Teng. CONTACT-IMPACT ANALYSIS IN MULTI-BODY SYSTEMS BASED ON NEWTON-EULER LCP APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1115-1125. DOI: 10.6052/0459-1879-17-023
    [6]Qi Zhaohui, Wang Gang, Li Tan. CONTACT ANALYSIS OF DEEP GROOVE BALL BEARING JOINT IN MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 426-433. DOI: 10.6052/0459-1879-12-320
    [7]Qi Zhaohui Luo Xiaoming Huang Zhihao. Frictional contact analysis of spatial prismatic joints in multibody systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 570-578. DOI: 10.6052/0459-1879-2011-3-lxxb2009-669
    [8]Fu Li Yue Yuefengtong. DAE-LCP mixed method for multibody system dynamics with frictional contacts[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 400-407. DOI: 10.6052/0459-1879-2011-2-lxxb2009-574
    [9]Jianyu Li, Shaohua Pan, Hongwu Zhang. A second-order cone linear complementarity approach for three-dimensional frictional contact problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 869-877. DOI: 10.6052/0459-1879-2009-6-2008-475
    [10]CONTACT SURFACE ELEMENT METHOD FOR THREE DIMENSIONAL ELASTIC CONTACT PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 613-619. DOI: 10.6052/0459-1879-1996-5-1995-377
  • Cited by

    Periodical cited type(5)

    1. 常思源,田中伟,李广利,肖尧,崔凯. 基于气动导数的高压捕获翼飞行器纵向稳定性数值研究. 中国科学:技术科学. 2024(02): 275-288 .
    2. 王浩祥,肖尧,张凯凯,李广利,常思源,田中伟,崔凯. 机体尾缘形状对高压捕获翼构型亚声速特性影响. 航空学报. 2023(06): 174-190 .
    3. 常思源,肖尧,李广利,田中伟,张凯凯,崔凯. 翼反角对高压捕获翼构型高超气动特性的影响. 航空学报. 2023(08): 45-58 .
    4. 肖尧,崔凯,李广利,田中伟,常思源. 高压捕获翼双翼构型宽速域气动性能研究. 气体物理. 2023(05): 54-60 .
    5. 常思源,肖尧,李广利,田中伟,崔凯. 翼反角对高压捕获翼构型亚声速气动特性影响分析研究. 力学学报. 2022(10): 2760-2772 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2097) PDF downloads (468) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return