EI、Scopus 收录
中文核心期刊
Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. DOI: 10.6052/0459-1879-18-297
Citation: Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. DOI: 10.6052/0459-1879-18-297

MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE

  • Received Date: September 09, 2018
  • Dielectrophoresis field flow fraction (DEP-FFF) is an efficient method for the separation of micro particles, in which the particles in micro channels are polarized and controlled to separate via a non-uniform electric field. The separation of flexible particles in DEP-FFF are influenced by many complex factors including multiphysics effects, multiphase flows and particle deformation. It is difficult to simulate the process with a single calculation method. In this paper, a finite element-lattice Boltzmann coupling method is introduced to solve this problem. The lattice Boltzmann is a mesoscopic method, in which the micro volumes of a fluid are represented with small particles. The Boltzmann transport equation for fluid dynamics is solved on discrete lattice, such that the multiphase flows and large deformation problems can be easily handled. Due to these advantages, the particle deformation in the DEP-FFF process can be readily handled by the lattice Boltzmann method. On the other hand, the simulation of the total DEP-FFF process requires the solution of the Navier-Stokes equation, dielectrophoresis force equation and particle trajectory equation. The computational burden will be very severe if only the lattice Boltzmann method is employed. By computing the dielectrophoresis force with finite element method, the computational efficiency is significantly improved. The finite element-lattice Boltzmann coupling method is applied in the simulation of the particle separation process within a typical DEP-FFF chip. Analyzing the dielectrophoresis force on the particles produced by the non-uniform electric field, the relationship between the dielectrophoresis force and the change rate of electric field is revealed. The trajectories of the particles under different electric conditions are traced to validate the efficiency of the DEP-FFF method. Most importantly, the deformations of the particle under the non-uniform electric filed are analyzed. It is found that the change of the particle trajectory is controlled by the dielectrophoresis force and thus the non-uniform electric field, while the deformation of the particle is mainly related to the shearing effect of the flows. The finite element-lattice Boltzmann multiscale coupling method introduced in this paper provides an effective solution for the calculation of complex micro flows.
  • [1] 姚梦迪, 吕雪飞, 邓玉林 . 基于微流控芯片的核酸检测技术. 生命科学仪器, 2017,15(4):22-28
    [1] ( Yao Mengdi, Lü Xuefei, Deng Yulin . Nucleic acid detection techniques based on microfluidic chip. Life Science Instruments, 2017,15(4):22-28 (in Chinese))
    [2] 孙克 . 微流控芯片技术在生命科学领域的研究进展. 当代医学, 2009,15(16):20-21
    [2] ( Sun Ke . Research progress of microfluidic chip technology in the field of life science. Contemporary Medicine, 2009,15(16):20-21(in Chinese))
    [3] 戴小珍, 蔡绍皙, 蒋稼欢 等. 微流控技术对细胞微环境的模拟及应用研究. 生物物理学报, 2010,26(3):209-215
    [3] ( Dai Xiaozhen, Cai Shaoxi, Jiang Jiahuan , et al. Simulation and application of microfluidic technology to cell microenvironment. Acta Biophysica Sinica, 2010,26(3):209-215 (in Chinese))
    [4] Arosio P, Muller T, Mahadevan L , et al. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett, 2014,14(5):2365-2371
    [5] 曾一笑, 樊磊, 吴菲 等. 基于介电电泳的粒子分离微流控芯片的研究. 仪表技术与传感器, 2017(2):5-8
    [5] ( Zeng Yixiao, Fan Lei, Wu Fei , et al. Study on particle separation of microfluidic chip based on dielectrophoresis. Instrument Technique & Sensor, 2017 ( 2):5-8 (in Chinese))
    [6] 董盛华, 张晶, 葛胜祥 . 微流控芯片细胞捕获分离方法概述. 生物化学与生物物理进展, 2016,43(11):1102-1110
    [6] ( Dong Shenghua, Zhang Jing, Ge Shengxiang . Microfluidic chips for cell capturing and separation. Progress in Biochemistry and Biophysics, 2016,43(11):1102-1110 (in Chinese))
    [7] Sun J, Gao Y, Isaacs RJ , et al. Simultaneous on-chip DC dielectrophoretic cell separation and quantitative separation performance characterization. Anal Chem, 2012,84(4):2017-2024
    [8] Song Y, Yang J, Shi X , et al. DC dielectrophoresis separation of marine algae and particles in a microfluidic chip. Science China Chemistry, 2012,55(4):524-530
    [9] 陶冶 . 基于液滴微流控的病毒颗粒检测与分离关键技术研究. [博士论文]. 哈尔滨:哈尔滨工业大学, 2016
    [9] ( Tao Ye . Reseatch on key Technologies of virus particle detection and sorting using drop-based microfluidics. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    [10] Pohl HA, Crane JS . Dielectrophoresis of cells. Biophysical Journal, 1972,11(9):606-611
    [11] 吴菲, 樊磊, 曾一笑 等. 基于介电泳原理的三明治式微流控芯片. 微纳电子技术, 2018(2):116-121
    [11] ( Wu Fei, Fan Lei, Zeng Yixiao , et al. Sandwiched microfluidic chip based on the principle of dielectrophoresis. Micronanoelectronic Technology, 2018(2):116-121 (in Chinese))
    [12] 王兆伟, 武晓刚, 陈魁俊 等. 一种力——电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137
    [12] ( Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):124-137 (in Chinese))
    [13] Girimaji S . Lattice Boltzmann method: Fundamentals and engineering applications with computer codes. AIAA Journal, 2011,51(4):398-404
    [14] Aldaeus F, Lin Y, Amberg G , et al. Multi-step dielectrophoresis for separation of particles. Journal of Chromatography A, 2006,1131(1-2):261
    [15] Piacentini N, Mernier G, Tornay R , et al. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics, 2011,5(3):427
    [16] Spelt JK, Absolom DR, Zingg W , et al. Determination of the surface tension of biological cells using the freezing front technique. Cell Biophysics, 1982,4(2-3):117-131
    [17] Ai Y, Park S, Zhu J , et al. DC electrokinetic particle transport in an L-shaped microchannel. Langmuir the Acs Journal of Surfaces & Colloids, 2010,26(4):2937-2944
    [18] 陈琰, 安立宝 . 微粒受介电泳力作用运动的仿真研究. 固体电子学研究与进展, 2015(1):25-30
    [18] ( Chen Yan, An Libao . Simulation of particle motion caused by dielectrophoretic force, Research & Progress of SSE, 2015(1):25-30 (in Chinese))
    [19] 曾议, 孙友文 . 一种微流控系统仿真的新方法. 高校化学工程学报, 2014(3):641-647
    [19] ( Zeng Yi, Sun Youwen . A new simulation method for microfluidic systems. Journal of Chemical Engineering of Chinese Universities, 2014(3):641-647 (in Chinese))
    [20] 王伟 . 基于介电泳的船舶压载水中微藻分离芯片研究. [硕士论文]. 大连: 大连海事大学, 2018
    [20] ( Wang Wei . Study on microalgae separation chip in ship ballast water based on dielectrophoresis. [Master Thesis]. Dalian: Dalian Maritime University, 2018 (in Chinese))
    [21] And SJM, Berendsen HJC . Permeation Process of small molecules across lipid membranes studied by molecular dynamics simulations. Journal of Physical Chemistry, 2017,100(41):16729-16738
    [22] 曹了然, 张春煜, 张鼎林 等. 分子动力学模拟技术在生物分子研究中的进展. 物理化学学报, 2017,33(7):1354-1365
    [22] ( Cao Liaoran, Zhang Chunyu, Zhang Dinglin , et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules. Acta Physico-Chimica Sinica, 2017,33(7):1354-1365 (in Chinese))
    [23] Phanich J, Threeracheep S, Kungwan N , et al. Glycan binding and specificity of viral influenza neuraminidases by classical molecular dynamics and replica exchange molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2018: 1-34
    [24] Sheikholeslami M . Magnetohydrodynamic nanofluid forced convection in a porous lid driven cubic cavity using Lattice Boltzmann method. Journal of Molecular Liquids, 2017,231:555-565
    [25] Mohamad AA . Lattice Boltzmann Method. London: Springer, 2011
    [26] Zhang P, Gao C, Zhang N , et al. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cellular & Molecular Bioengineering, 2014,7(4):552-574
    [27] 王永雷, 李占伟, 刘鸿 等. 耗散微粒动力学模拟方法在软物质体系研究中的一些进展与应用. 物理学进展, 2011,31(1):1-21
    [27] ( Wang Yonglei, Li Zhanwei, Liu Hong , et al. Progress and applications of dissipative particle dynamics simulation method in soft matters. Progress in Physics, 2011,31(1):1-21 (in Chinese))
    [28] 陈君, 彭晓峰 . 微颗粒布朗运动的LBM数值模拟//中国工程热物理学会2004年传热传质学学术会议论文集(上册). 北京, 2004: 556-559
    [28] ( Chen Jun, Peng Xiaofeng . Numerical simulation of brownian motion of microparticles by LBM//Chinese Society of Engineering Thermophysics Proceedings of 2004 Academic Conference on heat and mass transfer (Vol.1). Beijing, 2004: 556-559 (in Chinese))
    [29] Fu Y, Bai L, Zhao S , et al. Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method. Chemical Engineering Science, 2018,181:79-89
    [30] Leu TS, Weng CY . Studies of particle levitation in a dielectrophoretic field-flow fraction-based microsorter. Journal of Micro/Nanolithography Mems & Moems, 2009,8(2):75-78
    [31] 李钰航 . 介电液体中多种电荷输运的格子-Boltzmann模拟及传热分析. [硕士论文]. 哈尔滨:哈尔滨工业大学, 2017
    [31] ( Li Yuhang . Lattice Boltzmann simulation of multi-charge transprotation in dielectric fluide and heat transfer analysis. [Master Thesis]. Harbin: Harbin Institute of Technology, 2017 (in Chinese))
    [32] Chen L, Zheng XL, Ning HU , et al. Research progress on microfluidic chip of cell separation based on dielectrophoresis. Chinese Journal of Analytical Chemistry, 2015,43(2):300-309
    [33] Ai Y, Park S, Zhu J , et al. DC electrokinetic particle transport in an L-shaped microchannel. Langmuir the Acs Journal of Surfaces & Colloids, 2010,26(4):2937-2944
    [34] Pethig R . Review article-dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics, 2010,4(2):022811
    [35] 段欣悦 . 格子玻尔兹曼方法的理论研究与应用. [硕士论文]. 青岛:中国石油大学(华东), 2006
    [35] ( Duan Xinyue . Theory study and application of Lattice-Boltzmann Method. [Master Thesis]. Qingdao: China University of Petroleum, 2006 (in Chinese))
    [36] 郭照立, 郑楚光 . 格子Boltzmann方法的原理及应用. 北京: 科学出版社, 2009
    [36] ( Guo Zhaoli, Zheng Chuguang. Principle and application of lattice Boltzmann method. Beijing: Science Press, 2009 (in Chinese))
    [37] Hardy J, Pomeau Y, Pazzis OD . Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics, 1973,14(12):1746-1759
    [38] Frisch U, Hasslacher B, Pomeau Y . Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters, 1986,56(14):1505-1508
    [39] Frisch U, D'Hμmieres D,Hasslacher B ,et al.Lattice gas hydmdynamics in two and three dimensions. Complex Systems, 1987,1:649-707
    [40] Mcnamara GR, Zanetti G . Use of the Boltzmann equation to simulate lattice gas automata. Physical Review Letters, 1988,61(20):2332
    [41] Frisch. U, Hasslacher B, Pomeau Y . Lattice-gas automata for the NavierStokes equation. Physical Review Letters, 1986,6(14):1505-1508
    [42] McNamara GR, Zanetti G . Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 1988,61(20):2332-2335
    [43] Succi S. The Lattice Boltzmann Equation-For Fluid Dynamics and Beyond. Oxford: Clarendon Press, 2001
    [44] 李彦浩, 程永光 . 用多松弛格子Boltzmann方法模拟三维水击波. 武汉大学学报(工学版), 2013,46(4):417-422
    [44] ( Li Yanhao, Chen Yongguang . Three-dimensional simulation of water hammer wave by multiple-relaxtion-time lattice Boltzmann method. Engineering Journal of Wuhan University, 2013,46(4):417-422 (in Chinese))
    [45] Zhou T, Li XM, Liu F . MRT-LBM analysis of acoustic streaming in standing waves between two-dimensional flat plates. Journal of Computational Physics, 2018,35(1):39-46
    [46] Guo ZL, Shu C . Lattice Boltzmann Method and Its Applications in Engineering. World Scientific, 2013
    [47] 张培杰, 林建忠 . 非牛顿流体固粒悬浮流的若干问题. 力学学报, 2017,49(3):543-549
    [47] ( Zhang Peijie, Lin Jianzhong . Review of some researches on suspension of solid particle in non-newtonian fluid. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):543-549 (in Chinese))
    [48] 陈荣前, 聂德明 . 椭圆颗粒在剪切流中旋转特性的数值研究. 力学学报, 2017,49(2):257-267
    [48] ( Chen Rongqian, Nie Deming . Numerical study on the rotation of elliptical particle in shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):257-267 (in Chinese))
    [49] Merle CP, Davide CW. Mechanics of fluids (3rd ed). Beijing: China Machine Press, 2003
    [50] Danial NN, Korsmeyer SJ . Cell death: Critical control points. Cell, 2004,116(2):205-219
    [51] 郭超凡, 王云阳 . 蛋白质物理改性的研究进展. 食品安全质量检测学报, 2017,8(2):428-433
    [51] ( Guo Chaofan, Wang Yunyang . Research progress on physical modification methods of protein. Journal of Food Safety and Quality, 2017,8(2):428-433 (in Chinese))
  • Related Articles

    [1]Hu Kai, Gao Xiaowei, Xu Bingbing. STRONG WEAK COUPLING FORM ELEMENT DIFFERENTIAL METHOD FOR SOLVING SOLID MECHANICS PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2050-2058. DOI: 10.6052/0459-1879-22-087
    [2]Fang Wuyi, Guo Xian, Li Liang, Zhang Dingguo. DYNAMICS MODELING, SIMULATION, AND CONTROL OF ROBOTS WITH FLEXIBLE JOINTS AND FLEXIBLE LINKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 965-974. DOI: 10.6052/0459-1879-20-067
    [3]Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
    [4]Fan Jihua, Zhang Dingguo. DYNAMIC MODELING AND SIMULATION OF FLEXIBLE ROBOTS BASED ON DIFFERENT DISCRETIZATION METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 843-856. DOI: 10.6052/0459-1879-16-163
    [5]Zhang Xiaoshun, Zhang Dingguo, Hong Jiazheny. RIGID-FLEXIBLE COUPLING DYNAMIC MODELING AND SIMULATION WITH THE LONGITUDINAL DEFORMATION INDUCED CURVATURE EFFECT FOR A ROTATING FLEXIBLE BEAM UNDER LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 692-701. DOI: 10.6052/0459-1879-15-385
    [6]Hu Dean, Han Xu, Xiao Yihua, Yang Gang. RESEARCH DEVELOPMENTS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD AND ITS COUPLING WITH FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652. DOI: 10.6052/0459-1879-13-092
    [7]Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113
    [8]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [9]一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249
  • Cited by

    Periodical cited type(2)

    1. 刘云鹏,赵家莹,刘贺晨,赵涛,尹子澳. 低频电压下含纤维素颗粒变压器油绝缘特性及影响因素. 电工技术学报. 2024(04): 1198-1207 .
    2. 胡五龙,刘国峰,晏石林,范严伟. 土壤水分布的孔隙尺度格子玻尔兹曼模拟研究. 力学学报. 2021(02): 568-579 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1797) PDF downloads (247) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return