Processing math: 100%
EI、Scopus 收录
中文核心期刊
Zhang Xin, Huang Yong, Li Huaxing. FLOW CONTROL OVER A CIRCULAR CYLINDER USING PLASMA ACTUATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405. DOI: 10.6052/0459-1879-18-279
Citation: Zhang Xin, Huang Yong, Li Huaxing. FLOW CONTROL OVER A CIRCULAR CYLINDER USING PLASMA ACTUATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1396-1405. DOI: 10.6052/0459-1879-18-279

FLOW CONTROL OVER A CIRCULAR CYLINDER USING PLASMA ACTUATORS

  • Received Date: August 22, 2018
  • In order to develop a novel technology of Moving Surface Boundary Layer Control (MSBLC) and promote efficiency of flow control technology, flow control over a circular cylinder using two Dielectric Barrier Discharge (DBD) symmetrical plasma actuators was investigated by PIV technology, force measurements and hot wire. The circular cylinder which had a diameter of 50 mm and a spanwise length of 480 mm was placed on the support sting. Here, two symmetrical DBD plasma actuators were mounted at the top and bottom of the circular cylinder respectively. The testing model which was made of aluminum was adopted as the covered electrode and was wrapped by the KAPTON film. The exposed electrodes were copper foil tape which was 2 mm wide and 0.02 mm in thickness. Firstly, time-resolved PIV results in still air indicated that a pair of the starting vortexes which were rotating in the opposite direction was induced as the symmetrical plasma actuator was just started to work. The starting vortexes rolled up and moved away from the wall with time. Then, a bi-directional wall jet on both sides of the exposed electrode was formed by the symmetrical plasma actuator. Due to Coanda Effect, the induced jet moved along the surface of circular cylinder. Secondly, the force and hot wire measurement results under incoming flow suggested that vortex shedding from the circular cylinder can be suppressed significantly by the symmetrical plasma actuators and the drag coefficient was decreased by 21.8% at the wind speed of 10 m/s. Besides, it can be found that a steady vortex can be formed on the surface of cylinder thanks to the interaction effect between the incoming flow and the induced flow filed by plasma actuator. The induced vortex can transfer high momentum from main flow to the near-wall fluid by rotating and moving, enabling the boundary layer to withstand the adverse pressure gradient and prevent the separation around the circular cylinder and acting as the virtual MSBLC. Compared to the traditional MSBLC, the novel technology of MSBLC which is based on plasma actuator without sophisticated and cumbersome devices cannot bring extra drag and has vast application prospect.
  • [1] 王赛,邵传平. 隔离板对流向振荡圆柱尾流旋涡脱落的抑制. 力学学报,2012,44(4): 787-791
    [1] (Wang Sai,Shao Chuanping.Suppression of vortex shedding from an oscillating circular cylinder by a splitter plate. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 787-791 (in Chinese))
    [2] 谢杰,许劲松,郁程. 圆柱绕流的流动分离控制. 哈尔滨工程大学学报,2011,32(4): 401-406
    [2] (Xie Ji,Xu Jinsong,Yu Cheng.A flow separation control on cylinder flow. Journal of Harbin Engineering University, 2011, 32(4): 401-406 (in Chinese))
    [3] 邵传平,王建明. 较高Re数圆柱尾流的控制. 力学学报,2006,38(2): 153-161
    [3] (Shao Chuanping,Wang Jianming.Control of circular cylinder wakes at relatively high Reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 153-161 (in Chinese))
    [4] 陈野军,邵传平. 尾部喷射对流向振荡柱体尾流旋涡脱落的抑制. 中国科学G辑: 物理学力学天文学,2012,42(4): 406-420
    [4] (Chen Yejun, Shao Chuanping.Suppression of vortex shedding from an oscillating cylinder by base blowing. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(4): 406-420 (in Chinese))
    [5] 王晋军,冯立好,徐超军. 合成射流控制圆柱分离及绕流结构的实验研究. 中国科学E辑: 技术科学,2007,37(7): 944~951
    [5] (Wang Jinjun,Feng Lihao,Xu Chaojun. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Science China Technological Sciences, 2007,37(7): 944~951 (in Chinese))
    [6] 范春宝,张辉,陈志华. 圆柱绕流的优化控制. 空气动力学学报,2007,25(1): 97-101
    [6] (Fan Chunbao,Zhang Hui,Chen Zhihua.Adjoint-based optimal control of flow around cylinder. Acta Aerodynamic Sinica, 2007, 25(1): 97-101 (in Chinese))
    [7] 田永生. 圆柱绕流的一种主动控制模式. [硕士论文]. 天津:天津大学,2012
    [7] (Tian Yongsheng.An active control strategy for the flow past the cylinder.[PhD Thesis].Tianjin: Tianjin University, 2012 (in Chinese))
    [8] Modi VJ,Fernando MSUK,Yokomizc T.Moving surface boundary-layer control: studies with bluff bodies and application. AIAA Journal, 1991, 29(9): 1400-1406
    [9] 吴云,张海灯,于贤君. 轴流压气机等离子体流动控制. 工程热物理学报, 2017, 38(7): 1396-1414
    [9] (Wu Yun, Zhang Haideng, Yu Xianjun.Plasma flow control of axial compressor. Journal of Engineering Thermophysics, 2017, 38(7): 1396-1414 (in Chinese))
    [10] 赵光银,李应红,梁华等. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101-015112
    [10] (Zhao Guangyin, Li Yinghong, Liang Hua, et al.Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101-015112 (in Chinese))
    [11] 孟宣市,杨泽人, 陈琦等. 低雷诺数下层流分离的等离子体控制. 航空学报, 2016, 37(7): 2112-2122
    [11] (Meng Xuanshi, Yang Zeren, Chen Qi, et al.Laminar separation control at low Reynolds numbers using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2016, 37(7): 2112-2122 (in Chinese))
    [12] 冯立好,王晋军,Choi K S.等离子体环量控制翼型增升的实验研究. 力学学报,2013,45(6):815-821
    [12] (Feng Lihao, Wang Jinjun, Choi K Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(6):815-821(in Chinese ))
    [13] 史志伟,杜海,李铮等. 等离子体流动控制技术原理及典型应用. 高压电器, 2017, 53(4): 72-78
    [13] (Shi Zhiwei, Du Hai, Li Zheng, et al.Mechanism and applications of plasma flow control technology. High Voltage Apparatus, 2017, 53(4): 72-78 (in Chinese))
    [14] 苏长兵,宋慧敏,李应红. 基于等离子体激励的圆柱绕流控制实验研究. 实验流体力学,2006,20(4): 45-48
    [14] (Su Changbing,Song Huimin,Li Yinghong.Experiments of the flow field structure control around a circular cylinder based on plasma actuation. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 45-48 (in Chinese))
    [15] 李钢,李轶明,聂超群. 介质阻挡放电等离子体对圆柱绕流尾迹区流场影响实验研究. 科技导报,2008,26(2): 51-55
    [15] (Li Gang,Li Yiming,Nie Chaoqun.Experimental investigation on effects of dielectric barrier discharge plasma on flow field in the wake of circular cylinder cross flow. Science & Technology Review, 2008, 26(2): 51-55 (in Chinese))
    [16] 李文丰,蔡晋生,郝江南. 双极性等离子体激励器圆柱绕流控制实验研究. 实验流体力学,2013,27(3): 17-22
    [16] (Li Wenfeng,Cai Jinsheng,Hao Jiangnan.Flow control on a circular using multi-bipolar plasma actuator. Journal of Experiments in Fluid Mechanics}, 2013, 27(3): 17-22 (in Chinese))
    [17] 王建明,江海亮,明晓杰. 等离子体激励参数对圆柱绕流影响的风洞实验研究. 科学技术与工程,2017,35(17): 149-155
    [17] (Wang Jianming,Jiang Hailiang,Ming Xiaojie.Influence of plasma actuation parameters on the flow around a circular cylinder by a wind tunnel experiment. Science Technology and Engineering, 2017, 35(17): 149-155 (in Chinese))
    [18] Sung Y,Kim W,Mungal M.Aerodynamic modification of flow over bluff objects by plasma actuation. Experiments in Fluids, 2006, 41(3): 479-486
    [19] Thomas FO,Kozlov A,Corke T C.Plasma actuators for cylinder flow control and noise reduction. AIAA Journal, 2008, 46(8): 1921-1931
    [20] Kozlov A, Thomas FO. Active noise control of bluff-body flows using dielectric barrier discharge plasma actuators. AIAA Paper 2009-3245, 2009
    [21] 牛中国,赵光银,梁华. 三角翼DBD 等离子体流动控制研究进展. 航空学报, 2018, 40: 122201.
    [21] (Niu Zhongguo, Zhao Guangyin, Liang Hua.A review of studies of vortical flow control over delta wings using DBD plasma actuation. Acta Aeronautica et Astronautica Sinica, 2018, 40: 122201(in Chinese)
    [22] 杜海,史志伟,耿玺等离子体激励器对微型飞行器横航向气动力矩控制的实验研究. 航空学报, 2012, 33(10): 1781-1790
    [22] (Du Hai, Shi Zhiwei, Geng Xi.Experimental study of directional-lateral aerodynamic moment control of micro air vehicle by plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2012, 33(10): 1781-1790 (in Chinese))
    [23] 车学科,聂万胜,侯志勇等. 地面实验模拟高空等离子体流动控制效果. 航空学报, 2015, 36(2): 441-448
    [23] (Che Xueke, Nie Wansheng, Hou Zhiyong, et al.High altitude plasma flow control simulation through ground experiment. Acta Aeronoutica et Astronautica Sinica, 2015, 36(2): 441-448 (in Chinese))
    [24] 魏彪,梁华,牛中国等. 三角翼微秒脉冲等离子体流动控制的试验研究. 高电压技术, 2016, 42(3): 782-789
    [24] (Wei Biao, Liang Hua, Niu Zhongguo, et al.Experimental investigation of delta-wing flow control by microsecond pulse plasma actuator. High Voltage Engineering, 2016, 42(3): 782-789 (in Chinese))
    [25] 党维, 梁华. 基于纳秒脉冲等离子体气动激励的翼型失速涡控制研究. 高压电器, 2017, 53(12): 74-80
    [25] (Dang Wei, Liang Hua.Research of post-stall vortex control on airfoil based on nanosecond pulse plasma aerodynamic actuation. High Voltage Apparatus, 2017, 53(12): 74-80 (in Chinese))
    [26] 梁华,吴云,李军等. 等离子体气动激励改善增升装置气动性能的试验. 航空学报, 2016, 37(8): 2603-2613
    [26] (Liang Hua, Wu Yun, Li Jun, et al.Test of high lift system flow control by plasma aerodynamic actuation. Acta Aeronoutica et Astronautica Sinica, 2016, 37(8): 2603-2613 (in Chinese))
    [27] Feng LH, Choi KS, Wang JJ.Flow control over an airfoil using virtual Gurney flaps. Journal of Fluid Mechanics, 2015, 767: 595-626.
    [28] Zhang X, Huang Y, Wang XN.Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000000. Chinese Journal of Aeronautics, 2016, 29(5): 1237-1246
    [29] Zhang X, Li HX, Huang Y.Wing flow separation control using asymmetrical and symmetrical plasma actuator. Journal of Aircraft, 2017, 54(1): 301-309
    [30] Zhang X, Huang Y, Wang WB.Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed. Science China: Physics, Mechanics & Astronomy, 2014, 57(6): 1160-1168
    [31] 张鑫, 黄勇, 阳鹏宇. 等离子体无人机失速分离控制飞行实验. 航空学报, 2018, 39(2) :121587
    [31] (Zhang Xin, Huang Yong, Wang Xunnian.Flight testing of flow separation control using plasma actuator. Acta Aeronoutica et Astronautica Sinica, 2018, 39(2) :121587 (in Chinese))
    [32] Whalley RD, Choi KS.The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. Journal of Fluid Mechanics, 2013, 703: 192-203
    [33] Wang JJ, Choi KS, Feng LH, et al.Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 2013, 62:52-78
    [34] 张鑫,黄勇,阳鹏宇. 等离子体激励器诱导射流的湍流特性研究. 力学学报, 2018, 50(4): 776-786
    [34] (Zhang Xin, Huang Yong, Yang Pengyu, et al.Investigation on the turbulent characteristics of the jet induced by a plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 776-786 (in Chinese))
    [35] Zhang PF, Liu AB, Wang JJ.Aerodynamic modification of a NACA 0012 aerofoil by trailing-edge plasma Gurney flap. AIAA Journal, 2009, 47(10):2467-2474
    [36] Corke TC, Enloe CL, Wilkinson SP.Dielectric Barrier Discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 2010, 42(1): 505-529
    [37] Little JC.High-lift airfoil separation control with dielectric barrier discharge plasma actuators[PhD Thesis]. Columbus: The Ohio State University, 2010
    [38] Wang JJ, Feng LH, Xu CJ.Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Science in China Series E: Technological Science, 2007, 50(5): 550-559
    [39] Feng LH, Wang JJ.Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. Journal of Fluid Mechanics, 2010, 662:232-259
    [40] 黄明其, 武杰, 何龙. 旋翼模型悬停状态桨尖涡特性. 哈尔滨工业大学学报, 2018, 50(4): 124-129
    [40] (Huang Mingqi, Wu Jie, He Long.Blade tip vortex characteristics of rotor under hovering status. Journal of Harbin Institute of Technology, 2018, 50(4): 124-129 (in Chinese))
  • Related Articles

    [1]Yang Zhaohu, Li Xianfeng, Li Denghui, Zhou Biliu. GLOBAL DYNAMICS OF A PIECEWISE ASYMMETRIC OSCILLATOR UNDER QUASI-PERIODIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3012-3022. DOI: 10.6052/0459-1879-24-099
    [2]Hao Qi, Qiao Jichao. STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255
    [3]Guo Chongchong, Wu Wenhua, Wu Guodong, Cao Guangming, Lü Baicheng. MULTIBODY DYNAMICAL MODELING AND ANALYSIS OF MARINE NUCLEAR POWER PLATFORM POSITIONING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1443-1455. DOI: 10.6052/0459-1879-21-690
    [4]Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553
    [5]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [6]Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431
    [7]GLOBAL DYNAMICS SIMULATION OF MULTIBODY SYSTEMS WITH VARIABLE TOPOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(5): 633-637. DOI: 10.6052/0459-1879-1996-5-1995-380
    [8]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [9]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
    [10]串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772

Catalog

    Article Metrics

    Article views (1888) PDF downloads (297) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return