EI、Scopus 收录
中文核心期刊
Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172
Citation: Yu Simiao, Cai Lixun, Yao Di, Bao Chen, Chen Hui, Peng Yunqiang, Han Guangzhao. THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1063-1080. DOI: 10.6052/0459-1879-18-172

THE CRITICAL STRENGTH CRITERION OF METAL MATERIALS UNDER QUASI-STATIC LOADING

  • Received Date: May 29, 2018
  • For 10 types of specimens with different constraints, ductile fracture tests of 9 metal materials under unidirection loading were performed, and their load-displacement relations were measured. Based on the load-displacement curves of notched round bar, the full-range equivalent constitutive relationships of materials up to failure were obtained by FAT (finite-element-analysis aided testing) method. Further, the simulated force-displacement curves for different specimens were obtained based on the full-range constitutive relations, which agree well with the experimental force-displacement curves. The results demonstrate that the full-range constitutive relations up to failure obtained by FAT method have uniqueness for the materials. The critical fracture parameters such as critical stress, critical strain and critical stress triaxiality are investigated by failure simulations for the 36 specimens with different constraints. The first principal stress is suggested to be the master parameter to control ductile fracture. By analyzing the critical behaviors of the specimens which are smooth, notched and cracked, respectively, a unified strength criterion for ductile materials with stress triaxiality varying from 1 to 3 is proposed.
  • [1] Freudenthal AM.The Inelastic Behaviour of Solids. New York: Wiley, 1950
    [2] Cockcroft MG, Latham DJ.Ductility and the workability of metals. J Inst Met., 1968, 96(1): 33-39
    [3] Rice JR, Tracey DM.On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217
    [4] Brozzo P, Deluca B, Rendina R.A new method for the prediction of formability limits in metal sheets//Proc. 7th biennal Conf. IDDR. 1972
    [5] Oh SI, Kobayashi S.Workability of aluminum alloy 7075-T6 in upsetting and rolling. Journal of Engineering for Industry, 1976, 98(3): 800-806
    [6] Gurson AL.Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15
    [7] Tvergaard V.Influence of voids on shear band instabilities under plane strain conditions. International Journal of fracture, 1981, 17(4): 389-407
    [8] Tvergaard V.On localization in ductile materials containing spherical voids. International Journal of Fracture, 1982, 18(4): 237-252
    [9] Tvergaard V, Needleman A.Analysis of the cup-cone fracture in a round tensile bar. Acta Metallurgica, 1984, 32(1): 157-169
    [10] Needleman A, Tvergaard V.An analysis of ductile rupture in notched bars. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490
    [11] Nahshon K, Hutchinson JW.Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 2008, 27(1): 1-17
    [12] Nielsen KL, Tvergaard V.Effect of a shear modified Gurson model on damage development in a FSW tensile specimen. International Journal of Solids and Structures, 2009, 46(3-4): 587-601
    [13] 彭云强, 蔡力勋, 包陈等.基于材料全程本构关系对延性断裂韧性的数值模拟方法与应用. 工程力学, 2016, 33(5):11-17
    [13] (Peng Yunqing, Cai Lixun, Yao Di, et al.Numerical simulation methods and application for ductile fracture toughness based on full-range constitutive relationship. Engineering Mechanics, 2016, 33(5): 11-17 (in Chinese))
    [14] 古斌, 郭宇立, 李群. 基于构型力断裂准则的裂纹与夹杂干涉问题. 力学学报, 2017, 49(6): 1312-1321
    [14] (Gu Bing, Guo Yuli, Li Qun.Crack interacting with an individual inclusion by the fracture criterion of configuration al force. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1322-1334 (in Chinese))
    [15] 姚迪, 蔡力勋, 包陈等. 基于试验与有限元耦合技术的延性材料全程单轴本构关系获取方法. 固体力学学报, 2014, 35(3): 226-240
    [15] (Yao Di, Cai Lixun, Bao Chen, et al.Determination of stress-strain curve of ductile materials by testing and finite element coupling method. Chinese Journal of Solid Mechanics, 2014, 35(3): 226-240 (in Chinese))
    [16] 蔡力勋, 姚迪, 包陈. 单轴拉伸全程真应力-真应变曲线测试技术.中国专利: 201210518207, 2013
    [16] (Cai Lixun, Yao Di, Bao Chen.The testing technology of materials tensile constitutive curves. Chinese Patent: 201210518207, 2013 (in Chinese))
    [17] Bai Y, Wierzbicki T.Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 2010, 161(1): 1
    [18] Mohr O.Abhandlungen aus dem gebiete der technischen mechanik. 1906
    [19] Chen X, Shi MF, Shih HC, et al.AHSS shear fracture predictions based on a recently developed fracture criterion. SAE International Journal of Materials and Manufacturing, 2010, 3(2010-01-0988): 723-731
    [20] Luo M, Dunand M, Mohr D.Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading-Part II: Ductile fracture. Int. J. Plast International Journal of Plasticity, 2012, 32: 36-58
    [21] 高江平, 杨华, 蒋宇飞等. 三剪应力统一强度理论研究. 力学学报, 2017, 49(6): 1322-1334
    [21] (Gao Jiangping, Yang Hua, Jiang Yufei, et al.Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1322-1334 (in Chinese))
    [22] Johnson GR, Cook WH.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985, 21(1): 31-48
    [23] Bao Y, Wierzbicki T.On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 2004, 46(1): 81-98
    [24] Gentile D, Newaz G, Bonora N, et al.Ductile damage evolution under triaxial state of stress: Theory and experiments. Inter. J. Plast., 2005, 21(5): 981-1007
    [25] Bai Y, Wierzbicki T.A new model of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity, 2008, 24: 1071
    [26] Hopperstad OS, Borvik T, Langseth M, et al.On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments. European Journal of Mechanics-A/Solids, 2003, 22(1): 15-32
    [27] Anderson D, Winkler S, Bardelcik A, et al.Influence of stress triaxiality and strain rate on the failure behavior of a dual-phase DP780 steel. Materials & Design, 2014, 60(8): 198-207
    [28] Bridgman P W.Studies in Large Plastic Flow and Fracture. New York: McGraw-Hill, 1952
    [29] Eduardo E., Diego J.Celentano Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elements in Analysis and Design, 2004, 40(5): 555-575
    [30] Zhang KS.Technical note fracture prediction and necking analysis. Engineering Fracture Mechanics, 1995, 52(3): 575-582
    [31] Brünig M.Numerical analysis and modeling of large deformation and necking behavior of tensile specimens. Finite Elements in Analysis and Design, 1998, 28(4): 303-319
    [32] Dumoulin S, Tabourot L, Chappuis C, et al.Determination of the equivalent stress-equivalent strain relationship of a copper sample under tensile loading. Journal of Materials Processing Technology, 2003, 133(1-2): 79-83
    [33] Joun MS, Eom JG, Lee MC.A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method. Mechanics of Materials, 2008, 40(7): 586-593
    [34] Yao D, Cai L, Bao C.A new strength criterion for ductile materials based on a finite element aided testing method. Materials Science and Engineering: A, 2016, 673: 633-647
    [35] Chen H, Cai LX.Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Materials Science and Engineering: A, 2016, 121: 181-189
    [36] Chen H, Cai L.Unified elastoplastic model based on a strain energy equivalence principle. Applied Mathematical Modelling, 2017, 52: 664-671
    [37] 贺屹, 蔡力勋, 陈辉等. 求解I 型裂纹构元J 积分的半解析方法. 力学学报, 2018, 50(3): 579-588
    [37] (He Yi, Cai Lixun, Chen Hui, et al.A semi analytical method to solve J-integral for mode-I crack components. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588 (in Chinese))
  • Related Articles

    [1]Wang Biao, Wang Shuyu, Xiong Yukai, Zhao Jianfeng, Kang Guozheng, Zhang Xu. CRYSTAL PLASTIC FINITE ELEMENT SIMULATION OF TENSILE FRACTURE BEHAVIOR OF GRADIENT-GRAINED MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2271-2281. DOI: 10.6052/0459-1879-24-149
    [2]Shi Pengpeng. THEORETICAL MODEL OF MAGNETO-ELASTOPLASTIC COUPLING FOR MICRO-MAGNETIC NON-DESTRUCTIVE TESTING METHOD WITH STRESS CONCENTRATION AND PLASTIC ZONE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3341-3353. DOI: 10.6052/0459-1879-21-325
    [3]Gu Bin, Guo Yuli, Li Qun. CRACK INTERACTING WITH AN INDIVIDUAL INCLUSION BY THE FRACTURE CRITERION OF CONFIGURATIONAL FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1312-1321. DOI: 10.6052/0459-1879-17-209
    [4]Ji Xing. A CRITICAL REVIEW ON CRITERIA OF FRACTURE MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753. DOI: 10.6052/0459-1879-16-069
    [5]A GEOMETRICAL MODEL FOR FINITE ELASTIC-PLASTIC DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 204-212. DOI: 10.6052/0459-1879-1999-2-1995-028
    [6]COMPARISON OF FINITE ELEMENT CALCULAION AND EXPERIMENTAL STUDY OF ELASTIC-PLASTIC DEFORMATION AT CRACK TIP[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 51-57. DOI: 10.6052/0459-1879-1995-S-1995-502
    [7]A NON-LINEAR VISCOELASTIC-PLASTIC CONSTITUTIVE MODEL FOR GLASSY POLYMER PMMA[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 103-110. DOI: 10.6052/0459-1879-1993-1-1995-619
    [8]A 3-D COMPOSITE CONSTITUTIVE MODEL FOR ANALYSIS OF FINITE ELASTO-PLASTIC DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 162-170. DOI: 10.6052/0459-1879-1992-2-1995-724
  • Cited by

    Periodical cited type(13)

    1. 冯毅,万鑫铭,周佳,许伟,高翔,方刚,余春丽,张钧萍,申娟,黄利,于航. 汽车用先进高强钢板材断裂性能研究进展. 汽车工程学报. 2023(03): 273-297 .
    2. 张泽权,蔡力勋,韩光照,黄茂波. 基于弹塑性解析方程的薄片试样低周疲劳试验方法. 机械工程学报. 2023(06): 72-83 .
    3. 赵雷,刘佳,任群,杨丽,王辉,沈学静,贾云海,王海舟. 流体微探力学性能高通量表征方法. 中国材料进展. 2023(05): 406-414 .
    4. 叶想平,南小龙,冯琦杰,周韦,吴凤超,李雪梅,耿华运,胡建波,俞宇颖. 中子辐照和冷轧(预应变)对高纯铝压缩特性的影响. 力学学报. 2023(09): 2068-2074 . 本站查看
    5. 刘彦杰,高小青,李明强. 复杂应力状态下7085铝合金失效破坏试验与数值研究. 强度与环境. 2021(01): 40-46 .
    6. 张毅,薛世峰,韩丽美,周博,刘建林,贾朋. 半结晶聚合物损伤演化的实验表征与数值模拟. 力学学报. 2021(06): 1671-1683 . 本站查看
    7. 宋明,李旭阳,曹宇光,甄莹,司伟山. 基于BP神经网络与小冲杆试验确定在役管道钢弹塑性性能方法研究. 力学学报. 2020(01): 82-92 . 本站查看
    8. 谢怡玲,刘泽. 非晶合金理想裂纹预制方法及其在小试样K_(Ic)测试中的应用. 力学学报. 2020(02): 392-399 . 本站查看
    9. 李建国,黄瑞瑞,张倩,李晓雁. 高熵合金的力学性能及变形行为研究进展. 力学学报. 2020(02): 333-359 . 本站查看
    10. 焦卫东,蒋永华,李刚,蔡建程. 任意斜裂纹转子的耦合振动研究. 力学学报. 2020(02): 533-543 . 本站查看
    11. 叶想平,段志伟,俞宇颖,耿华运,李雪梅,胡凌,蔡灵仓,刘仓理. 预应变对中子辐照高纯铝拉伸性能的影响. 力学学报. 2020(03): 797-804 . 本站查看
    12. 汤文治,肖汉斌,邹晟. 非连续数字图像相关方法在裂纹重构中的应用. 力学学报. 2019(04): 1101-1109 . 本站查看
    13. 叶想平,刘仓理,蔡灵仓,胡昌明,俞宇颖,胡凌. 中子辐照金属材料的脆化模型研究. 力学学报. 2019(05): 1538-1544 . 本站查看

    Other cited types(11)

Catalog

    Article Metrics

    Article views (1725) PDF downloads (398) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return