Processing math: 100%
EI、Scopus 收录
中文核心期刊
Yang Chao, Sun Quanhua. ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733. DOI: 10.6052/0459-1879-18-056
Citation: Yang Chao, Sun Quanhua. ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 722-733. DOI: 10.6052/0459-1879-18-056

ANALYSIS OF DSMC REACTION MODELS FOR HIGH TEMPERATURE GAS SIMULATION 1)

  • The non-equilibrium phenomenon of thermochemical coupling has been a difficult problem in high temperature aerothermal dynamics, and hinders to analyze phenomena such as cell structure of detonation wave and ignition speed of low temperature combustion. In this paper, typical chemical reaction models (TCE, VFD, QK models) employed in the direct simulation Monte Carlo (DSMC) simulation are analyzed using two examples (namely, N2 dissociation at high temperature, and chain displacement reaction in H2? O2 combustion) from microscopic reaction probability, vibrational state specific reaction rates, total reaction rate under thermal nonequilibrium condition, and post-collision redistribution of internal energy. It is found that the probability distribution of vibrational energy of reacted molecules deviates from the equilibrium Boltzmann distribution for both the high temperature dissociation reaction having high activation energy and the chain displacement reaction having low activation energy. The VFD model with strong vibrational favored contribution can predict well the high temperature dissociation reaction, whereas the TCE model (a special case of VFD model) and QK model are better for the chain displacement reaction. Besides, the post-collision redistribution of internal energy should follow the principle of detailed balance, as small deviations may cause inequality between the translational and vibrational energy under final equilibrium state. The DSMC simulation results also show that the vibrational favor of chemical reactions has an obvious effect on the thermochemical coupling process. Particularly, because molecules having high vibrational energy are more easily to have chemical reactions, the decrease of the average vibrational energy of the gas will affect the subsequent chemical reactions.
  • [1] 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27
    [1] (Chen Song, Sun Quanhua.Analysis of maximum dissociation degree of oxygen during hypersonic flight.Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese))
    [2] 彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703
    [2] (Peng Aoping, Li Zhihui, Wu Junlin, et al.Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation.Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese))
    [3] 张子健, 刘云峰, 姜宗林, 振动激发对高超声速气动力/热影响. 力学学报, 2017, 49(3): 616-626
    [3] (Zhang Zijian, Liu Yunfeng, Jiang Zonglin.Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese))
    [4] Fiévet R, Voelkel S, Koo H, et al.Effect of thermal nonequilibrium on ignition in scramjet combustors.Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910
    [5] Shi L, Shen H, Zhang P, et al.Assessment of vibrational non-equilibrium effect on detonation cell size.Combustion Science and Technology, 2017, 189(5): 841-85
    [6] 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰波的数值研究. 力学学报, 2017, 49(2): 268-273
    [6] (Fang Yishen, Hu Zongmin, Teng Honghui, et al.Numerical study of the oblique detonation initiation induced by spheres.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese))
    [7] Park C.Assessment of two-temperature kinetic model for ionizing air.Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244
    [8] Park C. The limits of two-temperature model. AIAA Paper, 2010-911, 2010
    [9] Voelkel S, Raman V, Varghese PL.Effect of thermal nonequilibrium on reactions in hydrogen combustion.Shock Waves, 2016, 26(5): 539-549
    [10] Bird GA.Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Oxford: Clarendon Press, 1994
    [11] 樊菁. 稀薄气体动力学: 进展与应用. 力学进展, 2013, 43(2): 185-201
    [11] (Fan Jing.Rarefied gas dynamics: Advances and applications.Advances In Mechanics, 2013, 43(2): 185-201 (in Chinese))
    [12] Haas BL, Boyd ID.Models for direct Monte Carlo simulation of coupled vibration-dissociation.Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 478-489
    [13] Boyd ID, Bose D, Candler GV.Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations.Physics of Fluids, 1997, 9(4): 1162-1170
    [14] Bondar Y, Gimelshein N, Gimelshein S, et al.On the accuracy of DSMC modeling of rarefied flows with real gas effects.AIP Conference Proceedings, 2005, 762(1): 607-613
    [15] Bondar YA, Ivanov MS. DSMC dissociation model based on two-temperature chemical rate constant. AIAA Paper, 2007-614, 2007
    [16] Wysong IJ, Gimelshein SF.Comparison of DSMC reaction models with QCT reaction rates for nitrogen.AIP Conference Proceedings, 2016, 1786(1): 050021
    [17] Bird GA.The QK model for gas-phase chemical reaction rates.Physics of Fluids, 2011, 23(10): 106101
    [18] Baikov BS, Bayalina DK, Kustova EV, et al.Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions.AIP Conference Proceedings, 2016, 1786(1): 090005
    [19] Luo H, Kulakhmetov M, Alexeenko A.Ab initio state-specific N2+O dissociation and exchange modeling for molecular simulations.The Journal of Chemical Physics, 2017, 146(7): 074303
    [20] Sebastião IB, Kulakhmetov M, Alexeenko A.DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models.Physics of Fluids, 2017, 29(1): 017102
    [21] Ramin Z, Kamali-Moghadam R, Mani M.A new approach for chemical reaction simulation of rarefied gas flow by DSMC method.Computers & Fluids, 2016(140): 111-121
    [22] Sebastiao IB, Luo H, Kulakhmetov M, et al.DSMC implementation of compact state-specific N<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml229-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>+O dissociation and exchange models//55th AIAA Aerospace Sciences Meeting, 2017
    [23] Boyd ID.Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen.Physics of Fluids A : Fluid Dynamics, 1992: 4(1): 178-185
    [24] Kim JG, Boyd ID.Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections.Physics of Fluids, 2014, 26(1): 012006
    [25] Wysong I, Gimelshein S, Gimelshein N, et al.Reaction cross sections for two direct simulation Monte Carlo models: Accuracy and sensitivity analysis.Physics of Fluids, 2012, 24(4): 042002
    [26] Wysong I, Gimelshein S, Bondar Y, et al.Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements.Physics of Fluids, 2014, 26(4): 043101
    [27] Valentini P, Schwartzentruber TE, Bender JD, et al.Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface.Physics of Fluids, 2015, 27(8): 086102
    [28] Bird GA. The DSMC Method.Create Space Independent Publishing Platform, 2013
    [29] Bird GA.Chemical reactions in DSMC.AIP Conference Proceedings, 2011, 1333(1): 1195-1202
    [30] Bondar YA, Maruta K, Ivanov MS.Hydrogen-oxygen detonation study by the DSMC method.AIP Conference Proceedings, 2011, 1333(1): 1209-1214
    [31] Yang C, Sun QH.Investigation of spontaneous combustion of hydrogen-oxygen mixture using DSMC simulation.AIP Conference Proceedings, 2014, 1628(1): 1261-1267
    [32] Gimelshein SF, Gimelshein NE, Levin DA, et al.On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method.Physics of Fluids, 2004, 16(7): 2442-2451
    [33] Saxena P, Williams FA.Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide.Combustion and Flame, 2006, 145(1): 316-323
    [34] Bender JD, Valentini P, Nompelis I, et al.An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml230-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula> dissociation reactions.The Journal of Chemical Physics, 2015, 143(5): 054304
    [35] Gimelshein NE, Gimelshein SF, Levin DA.Vibrational relaxation rates in the direct simulation Monte Carlo method.Physics of Fluids, 2002, 14(12): 4452-4455
    [36] Maas U, Warnatz J.Ignition processes in hydrogen oxygen mixtures.Combustion and Flame, 1988, 74(1): 53-69
    [37] Dove JE, Teitelbaum H.The vibrational relaxation of H<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml231-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>. I. Experimental measurements of the rate of relaxation by H<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml232-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>, He, Ne, Ar, and Kr.Chemical Physics, 1974, 6(3): 431-444
  • Related Articles

    [1]Cong Binbin, Wan Tian. EFFECTS OF THERMOCHEMICAL AND TRANSPORT MODELS ON THE HIGH-SPEED DOUBLE-CONE FLOWFIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1012-1021. DOI: 10.6052/0459-1879-19-022
    [2]Xu Zhaodong, Xu Chao, Xu Yeshou. MICROSCOPIC MOLECULAR CHAIN STRUCTURE MODEL OF VISCOELASTIC DAMPER UNDER MICRO-VIBRATION EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 675-683. DOI: 10.6052/0459-1879-15-394
    [3]Xu Jinming Bai Yilong. Analysis of topography measurement error in atomic force microscope (AFM) and its revision method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 112-121. DOI: 10.6052/0459-1879-2011-1-lxxb2010-300
    [4]Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329
    [5]Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282
    [6]Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240
    [7]Water flooding microscopic seepage mechanism research based on three-dimension network model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 783-787. DOI: 10.6052/0459-1879-2005-6-2004-361
    [8]MICROSCOPIC ANALYSIS AND INVARIANT DESCRIPTION OF THE EFFECTIVE ELASTIC PROPERTIES OF DAMAGED SOLIDS ——A GENERAL THEORETIC MODEL ACCOUNTING FOR INTERACTION OF MICRO-DEFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(5): 552-563. DOI: 10.6052/0459-1879-1998-5-1995-161
    [9]A MACROSCOPIC-MICROSCOPIC CONSTITUTIVE MODEL FOR FERROELECTRIC CERAMICS 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(5): 540-551. DOI: 10.6052/0459-1879-1998-5-1995-160
    [10]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940
  • Cited by

    Periodical cited type(16)

    1. 钱致光,任宗金,王宇航,王郁赫,徐馨. 压电杆式天平六维力测量研究. 振动与冲击. 2024(17): 177-183 .
    2. 焦林虎,任宗金,张军,李小刚,王碧玲. 六维压电风洞盒式天平研究. 传感器与微系统. 2024(10): 31-34 .
    3. 聂少军,汪运鹏,王春,姜宗林. 激波风洞测力信号的频域数据深度学习建模分析方法. 振动与冲击. 2023(13): 296-302+315 .
    4. 刘美宽,韩桂来,姜宗林. 高超声速平板边界层数值模拟及试验研究. 气动研究与试验. 2023(05): 51-61 .
    5. 聂少军,汪运鹏. 基于时频变换的激波风洞天平信号分析与处理. 力学学报. 2022(01): 232-243 . 本站查看
    6. 赵荣娟,刘施然,周正,吴里银,吕治国. 激波风洞超燃冲压发动机推力测量技术研究. 实验流体力学. 2022(04): 103-108 .
    7. 聂少军,王粤,汪运鹏,赵敏,隋婧. 循环神经网络在智能天平研究中的应用. 力学学报. 2021(08): 2336-2344 . 本站查看
    8. 聂少军,汪运鹏,薛晓鹏,姜宗林. 激波风洞高低压段钢膜片破裂特性研究. 力学学报. 2021(06): 1747-1757 . 本站查看
    9. 曾慧,杨鸿,罗义成,孙宗祥. 现有高超声速设备的试验能力局限综述. 飞航导弹. 2021(08): 17-23 .
    10. 赵荣娟,黄军,刘施然,吕治国,李国志. ANSYS在压电天平设计中的应用. 实验流体力学. 2020(01): 96-102 .
    11. 汪运鹏,李小刚,姜宗林. 脉冲型天平高精度全自动校准系统. 中国科学:物理学 力学 天文学. 2020(06): 76-86 .
    12. 汪运鹏,杨瑞鑫,聂少军,姜宗林. 基于深度学习技术的激波风洞智能测力系统研究. 力学学报. 2020(05): 1304-1313 . 本站查看
    13. 赵金山,张志刚,石义雷,陈挺,肖雨,粟斯尧,廖军好,彭治雨. 高超声速飞行器气动热关联换算方法研究. 力学学报. 2018(05): 1235-1245 . 本站查看
    14. 张小庆,吕金洲,刘伟雄,高昌. 脉冲风洞一体化飞行器测力精度分析. 航空动力学报. 2018(12): 2924-2929 .
    15. 张小庆,王琪,刘伟雄,吕金洲. 高超声速飞行器脉冲风洞测力系统研究. 实验流体力学. 2018(05): 13-18 .
    16. 张子健,刘云峰,姜宗林. 振动激发对高超声速气动力/热影响. 力学学报. 2017(03): 616-626 . 本站查看

    Other cited types(13)

Catalog

    Article Metrics

    Article views (2208) PDF downloads (667) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return