[1] | 陈松, 孙泉华. 高超声速飞行流场中的最大氧离解度分析. 力学学报, 2014, 46(1): 20-27 | [1] | (Chen Song, Sun Quanhua.Analysis of maximum dissociation degree of oxygen during hypersonic flight.Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 20-27 (in Chinese)) | [2] | 彭傲平, 李志辉, 吴俊林等. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703 | [2] | (Peng Aoping, Li Zhihui, Wu Junlin, et al.Validation and analysis of gas-kinetic unified algorithm for solving Boltzmann model equation with vibrational energy excitation.Acta Physica Sinica, 2017, 66(20): 204703 (in Chinese)) | [3] | 张子健, 刘云峰, 姜宗林, 振动激发对高超声速气动力/热影响. 力学学报, 2017, 49(3): 616-626 | [3] | (Zhang Zijian, Liu Yunfeng, Jiang Zonglin.Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese)) | [4] | Fiévet R, Voelkel S, Koo H, et al.Effect of thermal nonequilibrium on ignition in scramjet combustors.Proceedings of the Combustion Institute, 2017, 36(2): 2901-2910 | [5] | Shi L, Shen H, Zhang P, et al.Assessment of vibrational non-equilibrium effect on detonation cell size.Combustion Science and Technology, 2017, 189(5): 841-85 | [6] | 方宜申, 胡宗民, 滕宏辉等. 圆球诱发斜爆轰波的数值研究. 力学学报, 2017, 49(2): 268-273 | [6] | (Fang Yishen, Hu Zongmin, Teng Honghui, et al.Numerical study of the oblique detonation initiation induced by spheres.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 268-273 (in Chinese)) | [7] | Park C.Assessment of two-temperature kinetic model for ionizing air.Journal of Thermophysics and Heat Transfer, 1989, 3(3): 233-244 | [8] | Park C. The limits of two-temperature model. AIAA Paper, 2010-911, 2010 | [9] | Voelkel S, Raman V, Varghese PL.Effect of thermal nonequilibrium on reactions in hydrogen combustion.Shock Waves, 2016, 26(5): 539-549 | [10] | Bird GA.Molecular Gas Dynamics and the Direct Simulation Monte Carlo of Gas Flows. Oxford: Clarendon Press, 1994 | [11] | 樊菁. 稀薄气体动力学: 进展与应用. 力学进展, 2013, 43(2): 185-201 | [11] | (Fan Jing.Rarefied gas dynamics: Advances and applications.Advances In Mechanics, 2013, 43(2): 185-201 (in Chinese)) | [12] | Haas BL, Boyd ID.Models for direct Monte Carlo simulation of coupled vibration-dissociation.Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 478-489 | [13] | Boyd ID, Bose D, Candler GV.Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations.Physics of Fluids, 1997, 9(4): 1162-1170 | [14] | Bondar Y, Gimelshein N, Gimelshein S, et al.On the accuracy of DSMC modeling of rarefied flows with real gas effects.AIP Conference Proceedings, 2005, 762(1): 607-613 | [15] | Bondar YA, Ivanov MS. DSMC dissociation model based on two-temperature chemical rate constant. AIAA Paper, 2007-614, 2007 | [16] | Wysong IJ, Gimelshein SF.Comparison of DSMC reaction models with QCT reaction rates for nitrogen.AIP Conference Proceedings, 2016, 1786(1): 050021 | [17] | Bird GA.The QK model for gas-phase chemical reaction rates.Physics of Fluids, 2011, 23(10): 106101 | [18] | Baikov BS, Bayalina DK, Kustova EV, et al.Inverse Laplace transform as a tool for calculation of state-specific cross sections of inelastic collisions.AIP Conference Proceedings, 2016, 1786(1): 090005 | [19] | Luo H, Kulakhmetov M, Alexeenko A.Ab initio state-specific N2+O dissociation and exchange modeling for molecular simulations.The Journal of Chemical Physics, 2017, 146(7): 074303 | [20] | Sebastião IB, Kulakhmetov M, Alexeenko A.DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models.Physics of Fluids, 2017, 29(1): 017102 | [21] | Ramin Z, Kamali-Moghadam R, Mani M.A new approach for chemical reaction simulation of rarefied gas flow by DSMC method.Computers & Fluids, 2016(140): 111-121 | [22] | Sebastiao IB, Luo H, Kulakhmetov M, et al.DSMC implementation of compact state-specific N<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml229-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>+O dissociation and exchange models//55th AIAA Aerospace Sciences Meeting, 2017 | [23] | Boyd ID.Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen.Physics of Fluids A : Fluid Dynamics, 1992: 4(1): 178-185 | [24] | Kim JG, Boyd ID.Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections.Physics of Fluids, 2014, 26(1): 012006 | [25] | Wysong I, Gimelshein S, Gimelshein N, et al.Reaction cross sections for two direct simulation Monte Carlo models: Accuracy and sensitivity analysis.Physics of Fluids, 2012, 24(4): 042002 | [26] | Wysong I, Gimelshein S, Bondar Y, et al.Comparison of direct simulation Monte Carlo chemistry and vibrational models applied to oxygen shock measurements.Physics of Fluids, 2014, 26(4): 043101 | [27] | Valentini P, Schwartzentruber TE, Bender JD, et al.Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface.Physics of Fluids, 2015, 27(8): 086102 | [28] | Bird GA. The DSMC Method.Create Space Independent Publishing Platform, 2013 | [29] | Bird GA.Chemical reactions in DSMC.AIP Conference Proceedings, 2011, 1333(1): 1195-1202 | [30] | Bondar YA, Maruta K, Ivanov MS.Hydrogen-oxygen detonation study by the DSMC method.AIP Conference Proceedings, 2011, 1333(1): 1209-1214 | [31] | Yang C, Sun QH.Investigation of spontaneous combustion of hydrogen-oxygen mixture using DSMC simulation.AIP Conference Proceedings, 2014, 1628(1): 1261-1267 | [32] | Gimelshein SF, Gimelshein NE, Levin DA, et al.On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method.Physics of Fluids, 2004, 16(7): 2442-2451 | [33] | Saxena P, Williams FA.Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide.Combustion and Flame, 2006, 145(1): 316-323 | [34] | Bender JD, Valentini P, Nompelis I, et al.An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml230-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula> dissociation reactions.The Journal of Chemical Physics, 2015, 143(5): 054304 | [35] | Gimelshein NE, Gimelshein SF, Levin DA.Vibrational relaxation rates in the direct simulation Monte Carlo method.Physics of Fluids, 2002, 14(12): 4452-4455 | [36] | Maas U, Warnatz J.Ignition processes in hydrogen oxygen mixtures.Combustion and Flame, 1988, 74(1): 53-69 | [37] | Dove JE, Teitelbaum H.The vibrational relaxation of H<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml231-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>. I. Experimental measurements of the rate of relaxation by H<inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml232-0459-1879-50-4-722"><mml:msub><mml:mrow><mml:mi mathvariant="normal"> </mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math></inline-formula>, He, Ne, Ar, and Kr.Chemical Physics, 1974, 6(3): 431-444 |
|