EI、Scopus 收录
中文核心期刊
Liu Jun, Zhang Yuqin. CFD SIMULATION ON THE PENETRATION OF FFP INTO UNIFORM CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 167-176. DOI: 10.6052/0459-1879-17-284
Citation: Liu Jun, Zhang Yuqin. CFD SIMULATION ON THE PENETRATION OF FFP INTO UNIFORM CLAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 167-176. DOI: 10.6052/0459-1879-17-284

CFD SIMULATION ON THE PENETRATION OF FFP INTO UNIFORM CLAY

  • Received Date: August 20, 2017
  • The cone penetration test (CPT) has been widely used to measure the soil undrained shear strength. On the basis of CPT, the free fall penetrometer (FFP) is developed to improve the test efficiency, which penetrates into soil by its kinetic energy gained from free fall in the water/air column and potential energy. However, the soil-FFP interaction is rather complex, which refers to the shear strain rate effect and drag force. Therefore, it is necessary to analyze the forces acting on the FFP accurately to improve its practicability and the accuracy of soil strength measurement. The FFP penetration procedure in uniform soils was simulated in the present study by using the commercial software ANSYS CFX 17.0, which is based on the computational fluid dynamics (CFD) approach. The dynamic mesh approach was applied to simulate the moving boundary. The thin layer element method was proposed to simulate the FFP-soil interaction. In the CFD simulation, the soil was modeled as non-Newtonian fluid and the shear strain rate effect was considered. Different FFP velocities, soil strengths and densities, interface frictional coefficients and shear strain rate parameters were considered to investigate their effects on the bearing and sleeve resistances of FFP. The fitted formulas of the cone bearing capacity factor, the strain rate parameters and drag coefficients for the cone and sleeve were established based on the present numerical results. In addition, the process to estimate the undrained shear strength of clayed soils was put forward, which may be beneficial for analyzing the recorded data from FFP.
  • 1 1 Freeman TJ, Murray CN, Francis TJG, et al. Modelling radioactive waste disposal by penetrator experiments in the abyssal Atlantic Ocean[J]. Nature, 1984, 310(5973): 130-133
    2 Dayal U, Allen JH.Instrumented impact cone penetrometer.Canadian Geotechnical Journal, 1973, 10(3): 397-409
    3 Chow SH, O'Loughlin CD, White DJ, et al. An extended interpretation of the free-fall piezocone test in clay. Geotechnique, 2017(ahead of print )
    4 O’Loughlin CD, Richardson MD, Randolph MF. Penetration of dynamically installed anchors in clay.Geotechnique, 2013, 63(11):909-919
    5 Shelton JT.OMNI-Maxtrade anchor development and technology. Oceans IEEE, 2007: 1-10
    6 Wang D, Bienen B, Nazem M, et al.Large deformation finite element analysis in geotechnical engineering. Computers and Geotechnics, 2015, 65(1): 104-114
    7 Chow SH, Airey DW.Free-falling penetrometers: a laboratory investigation in clay.Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(1): 201-214
    8 Chow SH, O′Loughlin CD. Randolph MF. Soil strength estimation and pore pressure dissipation for free-fall piezocone in soft clay.Geotechnique, 2014, 64(10):817-827
    9 Stark N, Radosavljevic B, Quinn B, et al.Application of portable free-fall penetrometer for geotechnical investigation of Arctic nearshore zone.Canadian Geotechnical Journal, 2017, 54(1): 31-46
    10 Araujo JBD, Machado RD, Junior CJDM.High Holding Power Torpedo Pile: Results for the First Long Term Application// International Conference on Offshore Mechanics and Arctic Engineering. 2004:417-421
    11 韩聪聪,刘君. 板翼动力锚沉贯深度模型试验研究. 海洋工程,2016, 34(5):92-100
    11 (Han Congcong, Liu Jun.Model tests on the penetration depth of gravity installed plate anchors.The Ocean Engineering, 2016, 34(5): 92-100 (in Chinese))
    12 刘君,李明治,韩聪聪. 土体率效应对动力锚沉贯深度影响. 大连理工大学学报, 2017, 57(1): 68-77
    12 (Liu Jun, Li Mingzhi, Han Congcong.Influence of soil strain-rate effect on embedment depth of dynamically installed anchors.Journal of Dalian University of Technology, 2017, 57(1): 68-77 (in Chinese))
    13 O’Loughlin CD, Richardson MD, Randolph MF. Centrifuge tests on dynamically installed anchors// International Conference on Ocean, Offshore and Arctic Engineering, Honolulu, 2009 (80238)
    14 Einav I, Randolph M.Effect of strain rate on mobilised strength and thickness of curved shear bands. Geotechnique, 2006, 56(7): 501-504
    15 Zhou M, Hossain MS, Hu Y, et al.Behaviour of ball penetrometer in uniform single-and double-layer clays.Geotechnique, 2013, 63(8): 682-694
    16 Kim YH, Hossain MS, Wang D.Effect of strain rate and strain softening on embedment depth of a torpedo anchor in clay.Ocean Engineering, 2015, 108: 704-715
    17 Liu H, Xu K, Zhao Y.Numerical investigation on the penetration of gravity installed anchors by a coupled Eulerian-Lagrangian approach.Applied Ocean Research, 2016, 60: 94-108
    18 Øye I.Simulation of trajectories for a deep penetrating anchor.CFD Norway Report, 2000
    19 Low HE, Lunne T, Andersen KH, et al.Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays.Geotechnique, 2010, 60(11): 843-859
    20 Palix E, Wu H, Chan N, et al.Liwan 3-1: how deepwater sediments from South China Sea compare with Gulf of Guinea sediments. Offshore Technology Conference. 2013, OTC24010
    21 Dayal U, Allen JH.The effect of penetration rate on the strength of remolded clay and sand samples.Canadian Geotechnical Journal, 1975, 12(3): 336-348
    22 Steiner A, Kopf AJ, L’Heureux JS, et al. In situ dynamic piezocone penetrometer tests in natural clayey soils—a reappraisal of strain-rate corrections.Canadian Geotechnical Journal, 2013, 51(3): 272-288
    23 Kim YH, Hossain MS.Dynamic installation of OMNI-Max anchors in clay: numerical analysis.Geotechnique, 2015, 65(12): 1029-1037
    24 Hawlader B, Dutta S, Fouzder A, et al. Penetration of steel catenary riser in soft clay seabed: finite-element and finite-volume methods. International Journal of Geomechanics, 2015, 15(6): 04015008-1-04015008-12
    25 Hawlader B, Fouzder A, Dutta S. Numerical modeling of suction and trench formation at the touchdown zone of steel catenary riser. International Journal of Geomechanics, 2016, 16(1): 04015033-1-04015033-14
    26 Zakeri A.Submarine debris flow impact on suspended (free-span) pipelines: Normal and longitudinal drag forces. Ocean Engineering, 2009, 36(6-7):489-499
    27 Liu J, Tian J, Yi P.Impact forces of submarine landslides on offshore pipelines.Ocean Engineering, 2015, 95(95):116-127
    28 Liu J, Zhang Y. Numerical simulation on the dynamic installation of the gravity installed plate anchor in clay: a fluid dynamic approach// ASME, Proceedings of the 36th International Conference on Ocean, Offshore and Arctic Engineering, 2017: OMAE2017-61570
    29 Randolph MF, White DJ.Interaction forces between pipelines and submarine slides — A geotechnical viewpoint.Ocean Engineering, 2012, 48(7):32-37
    30 Ma H, Zhou M, Hu Y, et al. Interpretation of layer boundaries and shear strengths for soft-stiff-soft clays using CPT data: LDFE analyses. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(1):04015055-1-04015055-12
    31 Chow SH, Airey D.Free-falling penetrometers: a laboratory investigation in clay.Journal of Geotechnical & Geoenvironmental Engineering, 2014, 140(1):201-214
  • Related Articles

    [1]Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. DOI: 10.6052/0459-1879-21-002
    [2]Niu Wendong, Wang Yanhui, Yang Yanpeng, Zhu Yaqiang, Wang Shuxin. HYDRODYNAMIC PARAMETER IDENTIFICATION OF HYBRID-DRIVEN UNDERWATER GLIDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 813-822. DOI: 10.6052/0459-1879-16-162
    [3]Zhang Wei, Zhang Weiwei, Quan Jingge, Ye Zhengyin. GUST ALLEVIATION OF TRANSONIC WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969. DOI: 10.6052/0459-1879-12-087
    [4]Yang Tao, Zhaolin Fan, Jifei Wu. CFD based virtual flight simulation of square cross-section missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 169-176. DOI: 10.6052/0459-1879-2010-2-2008-497
    [5]Gust response analysis using cfd-based reduced order models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 593-598. DOI: 10.6052/0459-1879-2008-5-2007-357
    [6]Guowei Yang, Jikang Wang. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153. DOI: 10.6052/0459-1879-2008-2-2007-230
    [7]EXPERIMENTAL TESTS AND NUMERICAL CALCULATIONS FOR THE 37 mm RAM ACCELERATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 450-455. DOI: 10.6052/0459-1879-1999-4-1995-053
    [8]混流式转轮内有旋流动的全三元反问题计算[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 30-36. DOI: 10.6052/0459-1879-1995-S-1995-500
    [9]串列双方柱体流体动力载荷研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(5): 529-534. DOI: 10.6052/0459-1879-1992-5-1995-772
  • Cited by

    Periodical cited type(18)

    1. 蔡琛芳,张隽研,沙心国,梁彬,袁湘江. 压缩拐角激波边界层干扰热流分布实验研究. 航天器环境工程. 2025(02): 167-173 .
    2. 郭同彪,张吉,李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究. 空天防御. 2024(02): 29-35 .
    3. 刘晓东,刘朋欣,李辰,孙东,袁先旭. 高焓激波/湍流边界层干扰直接数值模拟. 航空学报. 2023(13): 57-72 .
    4. 段俊亦,童福林,李新亮,刘洪伟. 压缩-膨胀湍流边界层平均摩阻分解. 航空学报. 2022(01): 71-82 .
    5. 时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 . 本站查看
    6. 吕金洲,李世超,张小庆,杨大伟,刘建霞,贺佳佳. 脉冲风洞天平-模型支撑一体化测力技术研究. 推进技术. 2022(10): 392-399 .
    7. 钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 . 本站查看
    8. 周林,沈毅,葛任伟. 可压缩流动脉动压力数值模拟求解器HFS研究. 装备环境工程. 2021(03): 23-28 .
    9. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
    10. Yuting HONG,Zhufei LI,Jiming YANG. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chinese Journal of Aeronautics. 2021(05): 504-509 .
    11. 姚冰,郭锐. 高超音速激波边界层干扰Fluent软件数值模拟. 电脑编程技巧与维护. 2020(04): 68-69+76 .
    12. 周志超,许凌飞,任天荣,顾村锋. 基于GCV-FFT方法的超声速压缩拐角流场气动光学效应计算. 计算物理. 2020(03): 284-298 .
    13. 吴正园,莫凡,高振勋,蒋崇文,李椿萱. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学学报. 2020(06): 1111-1119+1128 .
    14. 李益文,王宇天,庞垒,肖良华,丁志文,段朋振. 进气道等离子体/磁流体流动控制研究进展. 力学学报. 2019(02): 311-321 . 本站查看
    15. 童福林,周桂宇,周浩,张培红,李新亮. 激波/湍流边界层干扰物面剪切应力统计特性. 航空学报. 2019(05): 39-50 .
    16. 胡晨星,杨策. 采用不同黏性处理方法的宽无叶扩压器不稳定流动研究. 力学学报. 2019(06): 1775-1784 . 本站查看
    17. 骆信,吴颂平. 改进的五阶WENO-Z+格式. 力学学报. 2019(06): 1927-1939 . 本站查看
    18. 洪正,叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报. 2018(06): 1356-1367 . 本站查看

    Other cited types(9)

Catalog

    Article Metrics

    Article views (2128) PDF downloads (388) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return