[1] | Novoselov VS.Analytical Mechanics of Systems with Variable Mass. Leningrad: LU Press, 1969 (in Russian) | [2] | 杨来伍, 梅凤翔. 变质量系统力学. 北京: 北京理工大学出版社, 1989 | [2] | (Yang LW, Mei FX.Mechanics of Variable Mass Systems. Beijing: Beijing Institute of Technology Press, 1989 (in Chinese)) | [3] | Ge ZM.Advaneed Dynamics for Variable Mass Systems. Taipei: Gaulih Book Company, 1998 | [4] | Hirsch MW, Smale S. Differentical Equations, Dynamical Systems and Linear Algebra. NewYork: Academic Press, 1974 | [5] | Mc Lachlan RI, Quispel GRW, Robidoux N.Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society A, 1999, 357(1754): 1021-1045 | [6] | 陈向炜, 赵永红, 刘畅. 变质量完整动力学系统的共形不变性与守恒量. 物理学报, 2009, 58(8): 5150-5154 | [6] | (Chen Xiangwei, Zhao Yonghong, Liu Chang.Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Phys. Sin., 2009, 58(8): 5150-5154) | [7] | 李彦敏. 变质量非完整力学系统的共形不变性. 云南大学学报(自然科学版), 2010, 32(1): 52-57 | [7] | (Li Yanmin.Conformal invariance for nonholonomic mechanical systems with variable mass. Journal of Yunnan University(Natural Sciences), 2010, 32(1): 52-57) | [8] | 郑世旺, 王建波, 陈向炜. 变质量非完整系统Tzénoff方程的Lie对称性与其导出的守恒量. 物理学报, 2012, 61(11): 111101 | [8] | (Zheng Shiwang, Wang Jianbo, Chen Xiangwei.Lie symmetry and their conserved quantities of Tzénoff equations for the vairable mass nonholonomic systems. Acta Phys. Sin., 2012, 61(11): 111101) | [9] | 楼智美, 梅凤翔. 力学系统的二阶梯度表示. 物理学报, 2012, 61(2), 024502 | [9] | (Lou Zhimei, Mei Fengxiang.A second order gradient representation of mechanics system. Acta Physica Sinica, 2012, 61(2), 024502 (in Chinese)) | [10] | 梅凤翔, 吴惠彬. 一阶Lagrange系统的梯度表示. 物理学报, 2013, 62(21), 214501 | [10] | (Mei Fengxiang, Wu Huibin.A gradient representation of first-order Lagrange system. Acta Physica Sinica, 2013, 62(21), 214501(in Chinese)) | [11] | Chen XW, Zhao GL, Mei FX.A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73(1): 579-582 | [12] | Mei FX, Wu HB.Skew-gradient representation of generalized Birkhoffian system. Chinese Physics B, 2015, 24(10), 104502 | [13] | 梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统. 物理学报, 2015, 64(18), 184501 | [13] | (Mei Fengxiang, Wu Huibin.Generalized Birkhoff system and a kind of combined gradient system. Acta Physica Sinica, 2015, 64(18), 184501(in Chinese)) | [14] | 吴惠彬, 梅凤翔. 事件空间中完整力学系统的梯度表示. 物理学报, 2015, 64(23), 234501 | [14] | (Wu Huibin, Mei Fengxiang.A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23), 234501(in Chinese)) | [15] | Tomáš B, Ralph C, Eva F.Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math., 2012, 166: 57-72 | [16] | Marin AM, Ortiz RD, Rodriguez JA.A generalization of a gradient system, International Mathematical Forum, 2013, 8: 803-806 | [17] | 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton系统稳定性的影响. 应用数学和力学, 2014, 35(12): 1392-1397 | [17] | (Chen Xiangwei, Li Yanmin, Mei Fengxiang.Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397(in Chinese)) | [18] | Lin L, Luo SK.Fractional generalized Hamiltonian mechanics. Acta Mechanica, 2013, 224(8): 1757-1771 | [19] | Luo SK, He JM, Xu YL.Fractional Birkhoffian method for equilibrium stability of dynamical systems. International Journal of Non-Linear Mechanics, 2016, 78(1): 105-111 | [20] | 陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示. 力学学报, 2016, 48(3): 684-691 | [20] | (Chen Xiangwei, Cao Qiupeng, Mei Fengxiang.Generalized gradient representation of nonholonomic system of Chetaev’s type. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691(in Chinese)) | [21] | Mei FX, Wu HB.Two kinds of generalized gradient representations for holonomic mechanical systems. Chinese Physics B, 2016, 25(1), 014502 | [22] | Chen XW, Zhang Y, Mei FX.An application of a combined gradient system to stabilize a mechanical system. Chinese Physics B, 2016, 25(10), 100201 | [23] | Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems,an Introduction to Chaos. Singapore: Elsevier, 2008 | [24] | 梅凤翔. 关于梯度系统. 力学与实践, 2012, 34: 89-90 | [24] | (Mei Fengxiang.On gradient system. Mechanics in Engineering, 2012, 34: 89-90 (in Chinese)) | [25] | 梅凤翔. 分析力学下卷. 北京: 北京理工大学出版社, 2013 | [25] | (Mei Fengxiang. Analytical Mechanics Ⅱ.Beijing: Beijing Institute of Technology Press, 2013 (in Chinese)) | [26] | Chen XW, Mei FX.Constrained mechanical systems and gradient systems with strong Lyapunov functions. Mechanics Research Communications, 2016, 76: 91-95 | [27] | 梅凤翔, 吴惠彬. 广义Birkhoff系统的梯度表示. 动力学与控制学报, 2012, 10(4): 289-292 | [27] | (Mei Fengxiang, Wu Huibin.A gradient representation for generalized Birkhoff system. J of Dynam. and Control, 2012, 10(4): 289-292 (in Chinese)) | [28] | 梅凤翔, 吴惠彬. 广义Hamilton系统与梯度系统. 中国科学: 物理学力学天文学, 2013, 43(4): 538-540 | [28] | (Mei Fengxiang, Wu Huibin.Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica&Astronomica, 2013, 43(4): 538-540 (in Chinese)) | [29] | 陈向炜, 曹秋鹏, 梅凤翔. 广义Birkhoff 系统稳定性对双参数的依赖关系. 力学季刊, 2017, 38(1): 108-112 | [29] | (Chen Xiangwei, Cao Qiupeng, Mei Fengxiang.Dependance of stability of generalized Birkhoff system on two parameters. Chinese Quarterly of Mechanics, 2017, 38(1): 108-112) | [30] | 张晔, 陈向炜. 弱非线性耦合二维各向异性谐振子的动力学行为. 动力学与控制学报, 2017, 15(5): 410-414 | [30] | (Zhang Ye, Chen Xiangwei.Dynamics behavior of weak nonlinear coupled two-dimensional anisotropic harmonic oscillator. J of Dynam. and Control, 2017, 15(5): 410-414 (in Chinese)) | [31] | 梅凤翔, 吴惠彬. 约束力学系统的梯度表示上下. 北京: 科学出版社, 2016 | [31] | (Mei Fengxiang, Wu Huibin.Gradient Representations of Constrained Mechanical System Vol 1,2. Beijing: Science Press, 2016(in Chinese)) |
|