EI、Scopus 收录
中文核心期刊
Li Yan-Min, Zhang Ting-Ting, Mei Feng-Xiang. Stable variable mass mechanical systems constructed by using a gradient system with negative-definite matrix[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 109-113. DOI: 10.6052/0459-1879-17-283
Citation: Li Yan-Min, Zhang Ting-Ting, Mei Feng-Xiang. Stable variable mass mechanical systems constructed by using a gradient system with negative-definite matrix[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 109-113. DOI: 10.6052/0459-1879-17-283

Stable variable mass mechanical systems constructed by using a gradient system with negative-definite matrix

  • Received Date: August 16, 2017
  • With the development of science and technology, it is more and more important to study the dynamics of variable mass system such as jet aircraft and rocket, and it is always hoped that the solutions of the variable mass system are stable or asymptotically stable. It is difficult to study the stability by using Lyapunov direct methods because of the difficulty of constructing Lyapunov functions directly from the differential equations of the mechanical system. This paper presents an indirect method for studying stability, that is, gradient system method. This method can not only reveal the internal structure of dynamic system, but also help to explore the dynamic behavior such as the stability, asymptotic and bifurcation. The function V of the gradient system is usually taken as a Lyapunov function, so the gradient system is more suitable to be studied with the Lyapunov function. The equations of motion for the holonomic mechanical system with variable mass are listed, and all generalized accelerations are obtained in the case of non-singular system. A class of gradient system with negative-definite matrix is proposed, and the stability of the solutions of the gradient system is studied. This kind of gradient system and variable mass mechanical system are combined, then the conditions under which the solutions of the mechanical systems with variable mass can be stable or asymptotically stable are given. Further the mechanical system with variable mass whose solution is stable or asymptotically stable is constructed by using the gradient system with non-symmetrical negative-definite matrix. Through specific examples, it is studied that the solutions of the single degree of freedom motion of a variable mass system are stable or asymptotically stable under some conditions of the laws of mass change, particle separation velocity and force. The method is also suitable for the study of other constrained mechanical systems.
  • [1] Novoselov VS.Analytical Mechanics of Systems with Variable Mass. Leningrad: LU Press, 1969 (in Russian)
    [2] 杨来伍, 梅凤翔. 变质量系统力学. 北京: 北京理工大学出版社, 1989
    [2] (Yang LW, Mei FX.Mechanics of Variable Mass Systems. Beijing: Beijing Institute of Technology Press, 1989 (in Chinese))
    [3] Ge ZM.Advaneed Dynamics for Variable Mass Systems. Taipei: Gaulih Book Company, 1998
    [4] Hirsch MW, Smale S. Differentical Equations, Dynamical Systems and Linear Algebra. NewYork: Academic Press, 1974
    [5] Mc Lachlan RI, Quispel GRW, Robidoux N.Geometric integration using discrete gradients. Philosophical Transactions of the Royal Society A, 1999, 357(1754): 1021-1045
    [6] 陈向炜, 赵永红, 刘畅. 变质量完整动力学系统的共形不变性与守恒量. 物理学报, 2009, 58(8): 5150-5154
    [6] (Chen Xiangwei, Zhao Yonghong, Liu Chang.Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Phys. Sin., 2009, 58(8): 5150-5154)
    [7] 李彦敏. 变质量非完整力学系统的共形不变性. 云南大学学报(自然科学版), 2010, 32(1): 52-57
    [7] (Li Yanmin.Conformal invariance for nonholonomic mechanical systems with variable mass. Journal of Yunnan University(Natural Sciences), 2010, 32(1): 52-57)
    [8] 郑世旺, 王建波, 陈向炜. 变质量非完整系统Tzénoff方程的Lie对称性与其导出的守恒量. 物理学报, 2012, 61(11): 111101
    [8] (Zheng Shiwang, Wang Jianbo, Chen Xiangwei.Lie symmetry and their conserved quantities of Tzénoff equations for the vairable mass nonholonomic systems. Acta Phys. Sin., 2012, 61(11): 111101)
    [9] 楼智美, 梅凤翔. 力学系统的二阶梯度表示. 物理学报, 2012, 61(2), 024502
    [9] (Lou Zhimei, Mei Fengxiang.A second order gradient representation of mechanics system. Acta Physica Sinica, 2012, 61(2), 024502 (in Chinese))
    [10] 梅凤翔, 吴惠彬. 一阶Lagrange系统的梯度表示. 物理学报, 2013, 62(21), 214501
    [10] (Mei Fengxiang, Wu Huibin.A gradient representation of first-order Lagrange system. Acta Physica Sinica, 2013, 62(21), 214501(in Chinese))
    [11] Chen XW, Zhao GL, Mei FX.A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73(1): 579-582
    [12] Mei FX, Wu HB.Skew-gradient representation of generalized Birkhoffian system. Chinese Physics B, 2015, 24(10), 104502
    [13] 梅凤翔, 吴惠彬. 广义Birkhoff系统与一类组合梯度系统. 物理学报, 2015, 64(18), 184501
    [13] (Mei Fengxiang, Wu Huibin.Generalized Birkhoff system and a kind of combined gradient system. Acta Physica Sinica, 2015, 64(18), 184501(in Chinese))
    [14] 吴惠彬, 梅凤翔. 事件空间中完整力学系统的梯度表示. 物理学报, 2015, 64(23), 234501
    [14] (Wu Huibin, Mei Fengxiang.A gradient representation of holonomic system in the event space. Acta Physica Sinica, 2015, 64(23), 234501(in Chinese))
    [15] Tomáš B, Ralph C, Eva F.Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math., 2012, 166: 57-72
    [16] Marin AM, Ortiz RD, Rodriguez JA.A generalization of a gradient system, International Mathematical Forum, 2013, 8: 803-806
    [17] 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton系统稳定性的影响. 应用数学和力学, 2014, 35(12): 1392-1397
    [17] (Chen Xiangwei, Li Yanmin, Mei Fengxiang.Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397(in Chinese))
    [18] Lin L, Luo SK.Fractional generalized Hamiltonian mechanics. Acta Mechanica, 2013, 224(8): 1757-1771
    [19] Luo SK, He JM, Xu YL.Fractional Birkhoffian method for equilibrium stability of dynamical systems. International Journal of Non-Linear Mechanics, 2016, 78(1): 105-111
    [20] 陈向炜, 曹秋鹏, 梅凤翔. 切塔耶夫型非完整系统的广义梯度表示. 力学学报, 2016, 48(3): 684-691
    [20] (Chen Xiangwei, Cao Qiupeng, Mei Fengxiang.Generalized gradient representation of nonholonomic system of Chetaev’s type. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691(in Chinese))
    [21] Mei FX, Wu HB.Two kinds of generalized gradient representations for holonomic mechanical systems. Chinese Physics B, 2016, 25(1), 014502
    [22] Chen XW, Zhang Y, Mei FX.An application of a combined gradient system to stabilize a mechanical system. Chinese Physics B, 2016, 25(10), 100201
    [23] Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems,an Introduction to Chaos. Singapore: Elsevier, 2008
    [24] 梅凤翔. 关于梯度系统. 力学与实践, 2012, 34: 89-90
    [24] (Mei Fengxiang.On gradient system. Mechanics in Engineering, 2012, 34: 89-90 (in Chinese))
    [25] 梅凤翔. 分析力学下卷. 北京: 北京理工大学出版社, 2013
    [25] (Mei Fengxiang. Analytical Mechanics Ⅱ.Beijing: Beijing Institute of Technology Press, 2013 (in Chinese))
    [26] Chen XW, Mei FX.Constrained mechanical systems and gradient systems with strong Lyapunov functions. Mechanics Research Communications, 2016, 76: 91-95
    [27] 梅凤翔, 吴惠彬. 广义Birkhoff系统的梯度表示. 动力学与控制学报, 2012, 10(4): 289-292
    [27] (Mei Fengxiang, Wu Huibin.A gradient representation for generalized Birkhoff system. J of Dynam. and Control, 2012, 10(4): 289-292 (in Chinese))
    [28] 梅凤翔, 吴惠彬. 广义Hamilton系统与梯度系统. 中国科学: 物理学力学天文学, 2013, 43(4): 538-540
    [28] (Mei Fengxiang, Wu Huibin.Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica&Astronomica, 2013, 43(4): 538-540 (in Chinese))
    [29] 陈向炜, 曹秋鹏, 梅凤翔. 广义Birkhoff 系统稳定性对双参数的依赖关系. 力学季刊, 2017, 38(1): 108-112
    [29] (Chen Xiangwei, Cao Qiupeng, Mei Fengxiang.Dependance of stability of generalized Birkhoff system on two parameters. Chinese Quarterly of Mechanics, 2017, 38(1): 108-112)
    [30] 张晔, 陈向炜. 弱非线性耦合二维各向异性谐振子的动力学行为. 动力学与控制学报, 2017, 15(5): 410-414
    [30] (Zhang Ye, Chen Xiangwei.Dynamics behavior of weak nonlinear coupled two-dimensional anisotropic harmonic oscillator. J of Dynam. and Control, 2017, 15(5): 410-414 (in Chinese))
    [31] 梅凤翔, 吴惠彬. 约束力学系统的梯度表示上下. 北京: 科学出版社, 2016
    [31] (Mei Fengxiang, Wu Huibin.Gradient Representations of Constrained Mechanical System Vol 1,2. Beijing: Science Press, 2016(in Chinese))
  • Related Articles

    [1]Wen Guilin, Liu Jie, Chen Zijie, Wei Peng, Long Kai, Wang Hongxin, Rong Jianhua, Xie Yimin. A SURVEY OF NONLINEAR CONTINUUM TOPOLOGY OPTIMIZATION METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675. DOI: 10.6052/0459-1879-22-179
    [2]Huang Bin, He Zhiyun, Zhang Heng. HYBRID PERTURBATION-GALERKIN METHOD FOR GEOMETRICAL NONLINEAR ANALYSIS OF TRUSS STRUCTURES WITH RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1424-1436. DOI: 10.6052/0459-1879-19-099
    [3]Xingtian Liu, Shuhai Chen, Jiadeng Wang, Junfeng Shen. ANLYSIS OF THE DYNAMIC BEHAVIOR AND PERFORMANCE OF A VIBRATION ISOLATION SYSTEM WITH GEOMETRIC NONLINEAR FRICTION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 371-379. DOI: 10.6052/0459-1879-18-302
    [4]Wang Gang, Qi Zhaohui, Wang Jing. SUBSTRUCTURE METHODS OF GEOMETRIC NONLINEAR ANALYSIS FOR MEMBER STRUCTURES WITH HINGED SUPPORTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 273-283. DOI: 10.6052/0459-1879-13-345
    [5]Yijiang Peng, Yinghua Liu. Application of the base forces concept in geometrically nonlinear finite element method on complementary energy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 496-501. DOI: 10.6052/0459-1879-2008-4-2007-340
    [6]Bin Huang, Jianchen Suo, Wenjun Huang. Geometrical nonlinear analysis of truss structures with random parameters utilizing recursive stochastic finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 835-842. DOI: 10.6052/0459-1879-2007-6-2007-165
    [7]TWO-NODE CURVED ELEMENT METHOD FOR GEOMETRICALLY NONLINEAR ANALYSIS OF TENSION STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(5): 633-639. DOI: 10.6052/0459-1879-1999-5-1995-075
    [8]DYNAMICS OF THIN ELASTIC PLATES IN LARGE OVERALL MOTIONS CONSIDERING GEOMETRIC NON-LINEARITY AND COUPLING DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2): 243-249. DOI: 10.6052/0459-1879-1999-2-1995-025
    [9]A HIGHER ORDER NONLINEAR FEM FOR RC PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 379-384. DOI: 10.6052/0459-1879-1998-3-1995-140
    [10]GEOMETRICALLY NONLINEAR ANALYSES FOR 2-D PROBLEMS BASED ON THE INCOMPATIBLE FINITE ELEMENTS WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 505-513. DOI: 10.6052/0459-1879-1993-4-1995-673
  • Cited by

    Periodical cited type(7)

    1. 江巍,尹豪,吴剑,汤艳春,李坤鹏,郑宏. 基于S-R和分解定理的二维几何非线性问题的虚单元法求解. 工程力学. 2024(08): 23-35 .
    2. 宋彦琦,石博康,李向上. 基于S-R和分解定理的无网格法在功能梯度板中的应用. 上海大学学报(自然科学版). 2022(04): 702-714 .
    3. 杨健生,曾治平,韦冬炎,彭林欣. 基于无网格法的非均匀弹性地基上变厚度加筋板弯曲与固有频率分析. 计算力学学报. 2021(03): 364-370 .
    4. 覃霞,刘珊珊,谌亚菁,彭林欣. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析. 力学学报. 2020(01): 93-110 . 本站查看
    5. 肖国峰. 具有稳定数值解的三维谐振子. 计算力学学报. 2020(01): 119-130 .
    6. 王莉华,李溢铭,褚福运. 基于分区径向基函数配点法的大变形分析. 力学学报. 2019(03): 743-753 . 本站查看
    7. 刘斌,李冬明,谢佳萱. 非保守荷载大变形分析的无网格方法. 武汉理工大学学报. 2019(09): 71-77 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1470) PDF downloads (259) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return