EI、Scopus 收录
中文核心期刊
Zhao Danyang, Liu Tao, Li Hongxia, Wang Minjie. OPTIMIZATION DESIGN OF DEGRADABLE POLYMER VASCULAR STENT STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417. DOI: 10.6052/0459-1879-17-214
Citation: Zhao Danyang, Liu Tao, Li Hongxia, Wang Minjie. OPTIMIZATION DESIGN OF DEGRADABLE POLYMER VASCULAR STENT STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417. DOI: 10.6052/0459-1879-17-214

OPTIMIZATION DESIGN OF DEGRADABLE POLYMER VASCULAR STENT STRUCTURE

  • Received Date: June 07, 2017
  • Available Online: September 10, 2017
  • Due to the low stiffness of polymers, polymeric stent has lower radial support capability compared to metallic stent. Therefore, the width and thickness of the stent are usually increased to improve its radial support capability, which can not only reduce the flexible performance of the stent and the area of the vascular lumen, but also increase the surface coverage and thus increase the risk of in-stent restenosis. In order to design polymeric stent with smaller strut width and thickness and improve its radial support capability, an optimization method combining with Kriging surrogate model and finite element method was used to optimize the geometries of stent. Kriging surrogate model was used to construct the approximate function relationship between design objectives and design variables. Optimized Latin Hypercube Sampling method was used to select the initial sample points. EI function was used to balance global and local search and tend to find the global optimal solution. As an example, ART18Z polymeric stent was studied in this paper. Firstly, the strut width and thickness of the stent were respectively reduced by 0.02 mm, and then the optimization method was used to optimize the key geometric parameters of ART18Z stent. The numerical results show that the overall service performance of ART18Z stent was improved after optimization and the proposed optimization method can be effectively applied to the optimal design of the polymeric stent.
  • [1]
    Rivard A, Andrés V. Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histology and Histopathology, 2000, 15(2):557-571 https://ncbi.nlm.nih.gov/pubmed/10809377
    [2]
    葛均波.支架内再狭窄2014:当前问题.医心评论, 2014

    Ge Junbo. Intraventricular restenosis 2014:Current problem. Medical Heart Review, 2014 (in Chinese)
    [3]
    葛均波, 葛雷, 黄榕翀.慢性完全闭塞病变介入治疗进展与展望.心血管病学进展, 2007, 28(2):165-167 http://d.wanfangdata.com.cn/Periodical/xxgbxjz200702003

    Ge Junbo, Ge Lei, Huang Rongzhong. Advances in interventional therapy of chronic total occlusion. Advances in Cardiovascular Diseases, 2007, 28(2):165-167 (in Chinese) http://d.wanfangdata.com.cn/Periodical/xxgbxjz200702003
    [4]
    高润霖.药物洗脱支架研究现状及进展.中国实用内科杂志, 2006, 26(15):1121-1123 doi: 10.3969/j.issn.1005-2194.2006.15.001

    Gao Runlin. Research status and development of drug-eluting stents. Chinese Journal of Practical Internal Medicine, 2006, 26(15):1121-1123 (in Chinese) doi: 10.3969/j.issn.1005-2194.2006.15.001
    [5]
    易勇, 陈玉成, 曾智.冠脉支架内再狭窄防治研究进展.心脏杂志, 2003, 15(6):560-562 http://d.wanfangdata.com.cn/Periodical/xzzz200306027

    Yi Yong, Chen Yucheng, Zeng Zhi. Advances in prevention and treatment of coronary stent restenosis. Heart Magazine, 2003, 15(6):560-562 (in Chinese) http://d.wanfangdata.com.cn/Periodical/xzzz200306027
    [6]
    Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology drugeluting stents:Part Ⅰ. Circulation, 2003, 107(17):2274-2279 doi: 10.1161/01.CIR.0000069330.41022.90
    [7]
    Jr DJ. Role of adjunct pharmacologic therapy in the era of drugeluting stents. Atherosclerosis Supplements, 2005, 6(4):47-52 doi: 10.1016/j.atherosclerosissup.2005.09.001
    [8]
    刘赵淼, 南斯琦, 史艺.中等严重程度冠状动脉病变模型的血流动力学参数分析.力学学报, 2015, 47(6):1058-1064 doi: 10.6052/0459-1879-15-085

    Liu Zhaomiao, Nan Siqi, Shi Yi. Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1058-1064 (in Chinese) doi: 10.6052/0459-1879-15-085
    [9]
    Bressloff NW. Multi-Objective Design of a Biodegradable Coronary Artery Stent. Cardiovascular and Cardiac Therapeutic Devices:Springer Berlin Heidelberg, 2013:1-28
    [10]
    Zhang YJ, Bourantas CV, Farooq V, et al. Bioresorbable scaffolds in the treatment of coronary artery disease. Medical Devices Evidence & Research, 2013, 6(1):37-48 https://www.dovepress.com/getfile.php?fileID=15453
    [11]
    Kraak RP, Grundeken MJ, Koch KT, et al. Bioresorbable scaffolds for the treatment of coronary artery disease:Current status and future perspective. Expert Review of Medical Devices, 2014, 11(5):467-480 doi: 10.1586/17434440.2014.941812
    [12]
    Pauck RG, Reddy BD. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Medical Engineering & Physics, 2014, 37(1):7-12 http://www.sciencedirect.com/science/article/pii/S1350453314002483
    [13]
    Rogers C, Tseng DY, Squire JC, et al. Balloon-artery interactions during stent placement:A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circulation Research, 1999, 84(4):378-383 doi: 10.1161/01.RES.84.4.378
    [14]
    Etave F, Finet G, Boivin M, et al. Mechanical properties of coronary stents determined by using finite element analysis. Journal of Biomechanics, 2001, 34(8):1065-1075 doi: 10.1016/S0021-9290(01)00026-4
    [15]
    Migliavacca F, Petrini L, Colombo M, et al. Mechanical behavior of coronary stents investigated through the finite element method. Journal of Biomechanics, 2002, 35(6):803-811 doi: 10.1016/S0021-9290(02)00033-7
    [16]
    Mori K, Saito T. Effects of stent structure on stent flexibility measurements. Annals of Biomedical Engineering, 2005, 33(6):733-742. doi: 10.1007/s10439-005-2807-6
    [17]
    Wu W, Yang DZ, Huang YY, et al. Topology optimization of a novel stent platform with drug reservoirs. Medical Engineering & Physics, 2008, 30(9):1177-1185 http://www.medengphys.com/article/S1350453308000398/abstract
    [18]
    De BM, Van IR, Verhegghe B, et al. Finite element analysis and stent design:Reduction of dogboning. Technology & Health Care Official Journal of the European Society for Engineering & Medicine, 2006, 14(4-5):233-241 http://www.ncbi.nlm.nih.gov/pubmed/17065746
    [19]
    Conway C, Sharif F, Mcgarry JP, et al. A computational test-bed to assess coronary stent implantation mechanics using a populationspecific approach. Cardiovascular Engineering and Technology, 2012, 3(4):374-387 doi: 10.1007/s13239-012-0104-8
    [20]
    Wang WQ, Liang DK, Yang DZ, et al. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Journal of Biomechanics, 2006, 39(1):21-32 doi: 10.1016/j.jbiomech.2004.11.003
    [21]
    王伟强, 王丽, 杨大智等.血管支架有限元优化设计.生物医学工程学杂志, 2008, 25(2):372-377 http://d.wanfangdata.com.cn/Thesis/D739987

    Wang Weiqiang, Wang Li, Yang Dazhi, et al. Optimization of vascular stent finite element method. Biomedical Engineering, 2008, 25(2):372-377 (in Chinese) http://d.wanfangdata.com.cn/Thesis/D739987
    [22]
    Atherton MA, Bates RA. Robust optimization of cardiovascular stents:A comparison of methods. Engineering Optimization, 2003, 36(2):1-11 doi: 10.1080/03052150310001639290
    [23]
    Harewood F, Thornton R, Ireland M. Step Change in Design:Exploring Sixty Stent Design Variations Overnight C. Altair Product Design Workshop, 2011
    [24]
    Clune R, Kelliher D, Robinson JC, et al. NURBS modeling and structural shape optimization of cardiovascular stents. Structural & Multidisciplinary Optimization, 2014, 50(1):1-10 doi: 10.1007/s00158-013-1038-y/fulltext.html
    [25]
    杜超凡, 章定国.光滑节点插值法:计算固有频率下界值的新方法.力学学报, 2015, 47(5):839-847 doi: 10.6052/0459-1879-15-146

    Du Chaofan, Zhang Dingguo. Node-based smoothed point interpolation method:A new method for computing lower bound of natural frequency. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5):839-847 (in Chinese) doi: 10.6052/0459-1879-15-146
    [26]
    杜超凡, 章定国, 洪嘉振.径向基点插值法在旋转柔性梁动力学中的应用.力学学报, 2015, 47(2):279-288 doi: 10.6052/0459-1879-14-334

    Du Chaofan, Zhang Dingguo, Hong Jiazhen. A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):279-288 (in Chinese) doi: 10.6052/0459-1879-14-334
    [27]
    Li HX, Wang XY. Design optimization of balloon-expandable coronary stent. Structural & Multidisciplinary Optimization, 2013, 48(4):837-847 doi: 10.1007/s00158-013-0926-5
    [28]
    Li HX, Zhang YH, Zhu B, et al. Drug release analysis and optimization for drug-eluting stents. Scientific World Journal, 2013, 2013(4):827-839 http://www.hindawi.com/journals/tswj/2013/827839/cta/
    [29]
    李红霞, 王希诚.基于不同扩张模拟方式的支架优化设计.哈尔滨工业大学学报, 2011(s1):267-272 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebx2011s1058&dbname=CJFD&dbcode=CJFQ

    Li Hongxia, Wang Xicheng. The stent optimization design based on different expansion simulation. Journal of Harbin Institute of Technology, 2011(s1):267-272 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebx2011s1058&dbname=CJFD&dbcode=CJFQ
    [30]
    Pant S, Bressloff NW, Limbert G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomechanics and Modeling in Mechanobiology, 2012, 11(1):61-82 doi: 10.1007%2Fs10237-011-0293-3.pdf
    [31]
    Srinivas K, Nakayama T, Ohta M, et al. Studies on Design Optimization of Coronary Stents. Journal of Medical Devices, 2008, 2(1):121-136 http://proceedings.asmedigitalcollection.asme.org/article.aspx?articleid=1473777
    [32]
    Chua SND, Macdonald BJ, Hashmi MSJ. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. Journal of Materials Processing Technology, 2004, 155-156(6):1772-1779 http://www.sciencedirect.com/science/article/pii/S0924013604004984
    [33]
    Joseph VR, Hung Y. Orthogonal-maximin latin hypercube designs. Statistica Sinica, 2012, 18 (1):171-186 http://www3.stat.sinica.edu.tw/statistica/oldpdf/A18n17.pdf
  • Related Articles

    [1]Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297
    [2]Cui Da, Zhang Minghao, Li Daokui. DESIGN AND EXPERIMENTAL VERIFICATION OF COMPOSITE BEND-TWIST COUPLED STRUCTURE BASED ON ASYMMETRIC STACKING SEQUENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2888-2901. DOI: 10.6052/0459-1879-24-230
    [3]Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187
    [4]Zhao Huan. ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 223-238. DOI: 10.6052/0459-1879-22-391
    [5]Deng Kaiwen, Chen Haixin. HYBRID OPTIMIZATION ALGORITHM BASED ON DIFFERENTIAL EVOLUTION AND RBF RESPONSE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. DOI: 10.6052/0459-1879-16-285
    [6]Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036
    [7]Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532
    [8]Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422
    [9]Jian Wang, Guozhong Zhao, Hongwu Zhang. Shape control and design optimization of the piezoelectric curved shell structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 618-625. DOI: 10.6052/0459-1879-2007-5-2006-508
  • Cited by

    Periodical cited type(9)

    1. 李凯,杨静媛,高传强,叶坤,张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报. 2023(02): 299-308 . 本站查看
    2. 黄垲轩 ,丁喆 ,张严 ,李小白 . 高承载梯度分层点阵结构的拓扑优化设计方法. 力学学报. 2023(02): 433-444 . 本站查看
    3. 苗京涛,李河宗,黄素霞. 3D打印金属血管支架结构设计和力学性能测试. 特种铸造及有色合金. 2023(05): 619-623 .
    4. 李盼,冯静,许博轩,王志超,房德磊,曹琳,张峻霞. 冠状动脉血管支架的研究现状. 医疗卫生装备. 2023(06): 92-100 .
    5. 陈耀,叶王杰,史佳遥,冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报. 2022(07): 2019-2029 . 本站查看
    6. 魏云波,赵丹阳,王敏杰,李红霞. 高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析. 中国机械工程. 2020(09): 1098-1107+1130 .
    7. 王侃,李金亮,王景华,张磊安. 基于单粒子寻优算法的铺层装备支架梁结构优化设计. 可再生能源. 2020(12): 1621-1625 .
    8. 张宏辉,冯海全,李治国,韩青松. 镁合金冠脉支架支撑性能分析及其优化. 医用生物力学. 2019(01): 14-20 .
    9. 李笑,李明. 折纸及其折痕设计研究综述. 力学学报. 2018(03): 467-476 . 本站查看

    Other cited types(8)

Catalog

    Article Metrics

    Article views (1470) PDF downloads (352) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return