Citation: | Zhao Danyang, Liu Tao, Li Hongxia, Wang Minjie. OPTIMIZATION DESIGN OF DEGRADABLE POLYMER VASCULAR STENT STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417. DOI: 10.6052/0459-1879-17-214 |
[1] |
Rivard A, Andrés V. Vascular smooth muscle cell proliferation in the pathogenesis of atherosclerotic cardiovascular diseases. Histology and Histopathology, 2000, 15(2):557-571 https://ncbi.nlm.nih.gov/pubmed/10809377
|
[2] |
葛均波.支架内再狭窄2014:当前问题.医心评论, 2014
Ge Junbo. Intraventricular restenosis 2014:Current problem. Medical Heart Review, 2014 (in Chinese)
|
[3] |
葛均波, 葛雷, 黄榕翀.慢性完全闭塞病变介入治疗进展与展望.心血管病学进展, 2007, 28(2):165-167 http://d.wanfangdata.com.cn/Periodical/xxgbxjz200702003
Ge Junbo, Ge Lei, Huang Rongzhong. Advances in interventional therapy of chronic total occlusion. Advances in Cardiovascular Diseases, 2007, 28(2):165-167 (in Chinese) http://d.wanfangdata.com.cn/Periodical/xxgbxjz200702003
|
[4] |
高润霖.药物洗脱支架研究现状及进展.中国实用内科杂志, 2006, 26(15):1121-1123 doi: 10.3969/j.issn.1005-2194.2006.15.001
Gao Runlin. Research status and development of drug-eluting stents. Chinese Journal of Practical Internal Medicine, 2006, 26(15):1121-1123 (in Chinese) doi: 10.3969/j.issn.1005-2194.2006.15.001
|
[5] |
易勇, 陈玉成, 曾智.冠脉支架内再狭窄防治研究进展.心脏杂志, 2003, 15(6):560-562 http://d.wanfangdata.com.cn/Periodical/xzzz200306027
Yi Yong, Chen Yucheng, Zeng Zhi. Advances in prevention and treatment of coronary stent restenosis. Heart Magazine, 2003, 15(6):560-562 (in Chinese) http://d.wanfangdata.com.cn/Periodical/xzzz200306027
|
[6] |
Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology drugeluting stents:Part Ⅰ. Circulation, 2003, 107(17):2274-2279 doi: 10.1161/01.CIR.0000069330.41022.90
|
[7] |
Jr DJ. Role of adjunct pharmacologic therapy in the era of drugeluting stents. Atherosclerosis Supplements, 2005, 6(4):47-52 doi: 10.1016/j.atherosclerosissup.2005.09.001
|
[8] |
刘赵淼, 南斯琦, 史艺.中等严重程度冠状动脉病变模型的血流动力学参数分析.力学学报, 2015, 47(6):1058-1064 doi: 10.6052/0459-1879-15-085
Liu Zhaomiao, Nan Siqi, Shi Yi. Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1058-1064 (in Chinese) doi: 10.6052/0459-1879-15-085
|
[9] |
Bressloff NW. Multi-Objective Design of a Biodegradable Coronary Artery Stent. Cardiovascular and Cardiac Therapeutic Devices:Springer Berlin Heidelberg, 2013:1-28
|
[10] |
Zhang YJ, Bourantas CV, Farooq V, et al. Bioresorbable scaffolds in the treatment of coronary artery disease. Medical Devices Evidence & Research, 2013, 6(1):37-48 https://www.dovepress.com/getfile.php?fileID=15453
|
[11] |
Kraak RP, Grundeken MJ, Koch KT, et al. Bioresorbable scaffolds for the treatment of coronary artery disease:Current status and future perspective. Expert Review of Medical Devices, 2014, 11(5):467-480 doi: 10.1586/17434440.2014.941812
|
[12] |
Pauck RG, Reddy BD. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Medical Engineering & Physics, 2014, 37(1):7-12 http://www.sciencedirect.com/science/article/pii/S1350453314002483
|
[13] |
Rogers C, Tseng DY, Squire JC, et al. Balloon-artery interactions during stent placement:A finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circulation Research, 1999, 84(4):378-383 doi: 10.1161/01.RES.84.4.378
|
[14] |
Etave F, Finet G, Boivin M, et al. Mechanical properties of coronary stents determined by using finite element analysis. Journal of Biomechanics, 2001, 34(8):1065-1075 doi: 10.1016/S0021-9290(01)00026-4
|
[15] |
Migliavacca F, Petrini L, Colombo M, et al. Mechanical behavior of coronary stents investigated through the finite element method. Journal of Biomechanics, 2002, 35(6):803-811 doi: 10.1016/S0021-9290(02)00033-7
|
[16] |
Mori K, Saito T. Effects of stent structure on stent flexibility measurements. Annals of Biomedical Engineering, 2005, 33(6):733-742. doi: 10.1007/s10439-005-2807-6
|
[17] |
Wu W, Yang DZ, Huang YY, et al. Topology optimization of a novel stent platform with drug reservoirs. Medical Engineering & Physics, 2008, 30(9):1177-1185 http://www.medengphys.com/article/S1350453308000398/abstract
|
[18] |
De BM, Van IR, Verhegghe B, et al. Finite element analysis and stent design:Reduction of dogboning. Technology & Health Care Official Journal of the European Society for Engineering & Medicine, 2006, 14(4-5):233-241 http://www.ncbi.nlm.nih.gov/pubmed/17065746
|
[19] |
Conway C, Sharif F, Mcgarry JP, et al. A computational test-bed to assess coronary stent implantation mechanics using a populationspecific approach. Cardiovascular Engineering and Technology, 2012, 3(4):374-387 doi: 10.1007/s13239-012-0104-8
|
[20] |
Wang WQ, Liang DK, Yang DZ, et al. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. Journal of Biomechanics, 2006, 39(1):21-32 doi: 10.1016/j.jbiomech.2004.11.003
|
[21] |
王伟强, 王丽, 杨大智等.血管支架有限元优化设计.生物医学工程学杂志, 2008, 25(2):372-377 http://d.wanfangdata.com.cn/Thesis/D739987
Wang Weiqiang, Wang Li, Yang Dazhi, et al. Optimization of vascular stent finite element method. Biomedical Engineering, 2008, 25(2):372-377 (in Chinese) http://d.wanfangdata.com.cn/Thesis/D739987
|
[22] |
Atherton MA, Bates RA. Robust optimization of cardiovascular stents:A comparison of methods. Engineering Optimization, 2003, 36(2):1-11 doi: 10.1080/03052150310001639290
|
[23] |
Harewood F, Thornton R, Ireland M. Step Change in Design:Exploring Sixty Stent Design Variations Overnight C. Altair Product Design Workshop, 2011
|
[24] |
Clune R, Kelliher D, Robinson JC, et al. NURBS modeling and structural shape optimization of cardiovascular stents. Structural & Multidisciplinary Optimization, 2014, 50(1):1-10 doi: 10.1007/s00158-013-1038-y/fulltext.html
|
[25] |
杜超凡, 章定国.光滑节点插值法:计算固有频率下界值的新方法.力学学报, 2015, 47(5):839-847 doi: 10.6052/0459-1879-15-146
Du Chaofan, Zhang Dingguo. Node-based smoothed point interpolation method:A new method for computing lower bound of natural frequency. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5):839-847 (in Chinese) doi: 10.6052/0459-1879-15-146
|
[26] |
杜超凡, 章定国, 洪嘉振.径向基点插值法在旋转柔性梁动力学中的应用.力学学报, 2015, 47(2):279-288 doi: 10.6052/0459-1879-14-334
Du Chaofan, Zhang Dingguo, Hong Jiazhen. A meshfree method based on radial point interpolation method for the dynamic analysis of rotating flexible beams. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):279-288 (in Chinese) doi: 10.6052/0459-1879-14-334
|
[27] |
Li HX, Wang XY. Design optimization of balloon-expandable coronary stent. Structural & Multidisciplinary Optimization, 2013, 48(4):837-847 doi: 10.1007/s00158-013-0926-5
|
[28] |
Li HX, Zhang YH, Zhu B, et al. Drug release analysis and optimization for drug-eluting stents. Scientific World Journal, 2013, 2013(4):827-839 http://www.hindawi.com/journals/tswj/2013/827839/cta/
|
[29] |
李红霞, 王希诚.基于不同扩张模拟方式的支架优化设计.哈尔滨工业大学学报, 2011(s1):267-272 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebx2011s1058&dbname=CJFD&dbcode=CJFQ
Li Hongxia, Wang Xicheng. The stent optimization design based on different expansion simulation. Journal of Harbin Institute of Technology, 2011(s1):267-272 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hebx2011s1058&dbname=CJFD&dbcode=CJFQ
|
[30] |
Pant S, Bressloff NW, Limbert G. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomechanics and Modeling in Mechanobiology, 2012, 11(1):61-82 doi: 10.1007%2Fs10237-011-0293-3.pdf
|
[31] |
Srinivas K, Nakayama T, Ohta M, et al. Studies on Design Optimization of Coronary Stents. Journal of Medical Devices, 2008, 2(1):121-136 http://proceedings.asmedigitalcollection.asme.org/article.aspx?articleid=1473777
|
[32] |
Chua SND, Macdonald BJ, Hashmi MSJ. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. Journal of Materials Processing Technology, 2004, 155-156(6):1772-1779 http://www.sciencedirect.com/science/article/pii/S0924013604004984
|
[33] |
Joseph VR, Hung Y. Orthogonal-maximin latin hypercube designs. Statistica Sinica, 2012, 18 (1):171-186 http://www3.stat.sinica.edu.tw/statistica/oldpdf/A18n17.pdf
|
[1] | Yu Jiangfei, Zhou Zixuan, Peng Jiangpeng, Tang Tao, Yang Wangfeng, Yang Yixin, Wang Hongbo. OPTIMIZATION DESIGN OF COMBUSTION CHAMBER CONFIGURATION PARAMETERS FOR SCRAMJET ENGINES BASED ON SURROGATE MODELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3359-3370. DOI: 10.6052/0459-1879-24-297 |
[2] | Cui Da, Zhang Minghao, Li Daokui. DESIGN AND EXPERIMENTAL VERIFICATION OF COMPOSITE BEND-TWIST COUPLED STRUCTURE BASED ON ASYMMETRIC STACKING SEQUENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2888-2901. DOI: 10.6052/0459-1879-24-230 |
[3] | Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187 |
[4] | Zhao Huan. ADAPTIVE MULTI-FIDELITY POLYNOMIAL CHAOS-KRIGING MODEL-BASED EFFICIENT AERODYNAMIC DESIGN OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 223-238. DOI: 10.6052/0459-1879-22-391 |
[5] | Deng Kaiwen, Chen Haixin. HYBRID OPTIMIZATION ALGORITHM BASED ON DIFFERENTIAL EVOLUTION AND RBF RESPONSE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 441-455. DOI: 10.6052/0459-1879-16-285 |
[6] | Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036 |
[7] | Guangyong Sun, Guangyao Li, Gang Zheng, Zhihui Gong. Multi-objective optimization for sheet metal formnig of drawing with successive response surface method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 245-255. DOI: 10.6052/0459-1879-2010-2-2007-532 |
[8] | Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422 |
[9] | Jian Wang, Guozhong Zhao, Hongwu Zhang. Shape control and design optimization of the piezoelectric curved shell structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 618-625. DOI: 10.6052/0459-1879-2007-5-2006-508 |
1. |
李凯,杨静媛,高传强,叶坤,张伟伟. 基于POD和代理模型的静气动弹性分析方法. 力学学报. 2023(02): 299-308 .
![]() | |
2. |
黄垲轩 ,丁喆 ,张严 ,李小白 . 高承载梯度分层点阵结构的拓扑优化设计方法. 力学学报. 2023(02): 433-444 .
![]() | |
3. |
苗京涛,李河宗,黄素霞. 3D打印金属血管支架结构设计和力学性能测试. 特种铸造及有色合金. 2023(05): 619-623 .
![]() | |
4. |
李盼,冯静,许博轩,王志超,房德磊,曹琳,张峻霞. 冠状动脉血管支架的研究现状. 医疗卫生装备. 2023(06): 92-100 .
![]() | |
5. |
陈耀,叶王杰,史佳遥,冯健. 三浦折纸超材料结构数字化设计与模型验证. 力学学报. 2022(07): 2019-2029 .
![]() | |
6. |
魏云波,赵丹阳,王敏杰,李红霞. 高径向支撑性可生物降解聚合物血管支架结构设计与力学性能分析. 中国机械工程. 2020(09): 1098-1107+1130 .
![]() | |
7. |
王侃,李金亮,王景华,张磊安. 基于单粒子寻优算法的铺层装备支架梁结构优化设计. 可再生能源. 2020(12): 1621-1625 .
![]() | |
8. |
张宏辉,冯海全,李治国,韩青松. 镁合金冠脉支架支撑性能分析及其优化. 医用生物力学. 2019(01): 14-20 .
![]() | |
9. |
李笑,李明. 折纸及其折痕设计研究综述. 力学学报. 2018(03): 467-476 .
![]() |