EI、Scopus 收录
中文核心期刊
Li Kang, Liu Na, He Zhiwei, Luo Longshan, Tian Baolin. A NEW INTERFACE CAPTURING METHOD BASED ON DOUBLE INTERFACE FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1290-1300. DOI: 10.6052/0459-1879-17-210
Citation: Li Kang, Liu Na, He Zhiwei, Luo Longshan, Tian Baolin. A NEW INTERFACE CAPTURING METHOD BASED ON DOUBLE INTERFACE FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1290-1300. DOI: 10.6052/0459-1879-17-210

A NEW INTERFACE CAPTURING METHOD BASED ON DOUBLE INTERFACE FUNCTIONS

  • Received Date: September 03, 2017
  • Available Online: September 12, 2017
  • We describe a novel double-interface-function (DIF) reconstruction method for efficient numerical resolution of a compressible two-phase flow. Based on the new method, double sine interface capturing scheme (DSINC) is obtained. Five-equation model is solved to analyze the effect of different interface functions such as DIF and Single Interface function (SIF) on the interfaces captured numerically. Near the interfaces, the algorithm uses the DIF or SIF as a basis for the reconstruction of a sub-grid discontinuity of volume fractions. In regions away from the interfaces, WENO is used to reconstruct the convective term, and time integration of the algorithm is done by employing the TVD Runge-Kutta method. Comparing with tangent of hyperbola for interface capturing (THINC) using SIF method, the left and right states reconstructed by DSINC is simpler and we need not solve a transcendental equation. Numerical results are shown with the Mie-Grüneisen equation of state (EOS) for sample problems such as discontinuous advection, two-phase triple problem and shock-bubble interaction problem with THINC and DSINC. It can be found that DSINC is able to get as efficient resolution interface as THINC and shows to be more stable in the simulation.
  • [1]
    赵宁, 王东红.多介质流体界面问题的数值模拟.北京:科学出版社, 2016

    Zhao Ning, Wang Donghong. Numerical Simulation of Multimaterial Fluid Interface Problems. Beijing:Science Press, 2016 (in Chinese)
    [2]
    Jesus WC, Roma AM, Pivello MR, et al. A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant. Journal of Computational Physics, 2015, 281(c):403-420 http://dblp.uni-trier.de/db/journals/jcphy/jcphy281.html#JesusRPVS15
    [3]
    Terashima H, Tryggvason G. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. Journal of Computational Physics, 2009, 228(11):4012-4037 doi: 10.1016/j.jcp.2009.02.023
    [4]
    Tryggvason G, Bunner B, Esmaeeli A, et al. A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, 169(2):708-759 doi: 10.1006/jcph.2001.6726
    [5]
    Lu H, Zhao N, Wang D. A front tracking method for the simulation of compressible multimedium flows. Communications in Computational Physics, 2016, 19(1):124-142 doi: 10.4208/cicp.260314.310315a
    [6]
    Scardovelli R, Zaleski S. Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech, 1999, 31(1):567-603 doi: 10.1146/annurev.fluid.31.1.567
    [7]
    Torres DJ, Brackbill JU. The point-set mothod:front-tracking without connectivity. Journal of Computational Physics, 2000, 165(2):620-644 doi: 10.1006/jcph.2000.6635
    [8]
    Fedkiw RP, Sapiro G, Shu C-W. Shock capturing, Level sets and PDE based methods in computer vision and image processing:A review of Osher's constributions. Journal of Computational Physics, 2003, 185(2):309-341 doi: 10.1016/S0021-9991(02)00016-5
    [9]
    Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1):146-159 doi: 10.1006/jcph.1994.1155
    [10]
    Fleckenstein S, Bothe D. A volume-of-fluid-based numerical method for multi-component mass transfer with local volume changes. Journal of Computational Physics, 2015, 301(c):35-58 doi: 10.1016/j.jcp.2015.08.011
    [11]
    Shyue K-M, Xiao F. An Eulerian interface sharpening algorithm for compressible two-phase flow:The algebraic THINC approach. Journal of Computational Physics, 2014, 268(2):326-354 http://linkinghub.elsevier.com/retrieve/pii/S0021999114001831
    [12]
    Susman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible twophase flows. Journal of Computational Physics, 2000, 162(2):301-337 doi: 10.1006/jcph.2000.6537
    [13]
    So KK, Hu XY, Adams NA. Anti-diffusion method for interface steepening in two-phase incompressible flow. Journal of Computational Physics, 2011, 230(13):5155-5177 doi: 10.1016/j.jcp.2011.03.011
    [14]
    So KK, Hu XY, Adams NA. Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. Journal of Computational Physics, 2012, 231(11):4304-4323 doi: 10.1016/j.jcp.2012.02.013
    [15]
    Youngs DL. An interface tracking method for a 3D Eulerian hydrodynamics code. Technical Report 44/92/35, AWRE, 1984
    [16]
    Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function. International Journal for Numerical Methods in Fluids, 2005, 48(9):1023-1040 doi: 10.1002/(ISSN)1097-0363
    [17]
    Xiao F, Li S, Chen C. Revisit to the THINC scheme:A simple algebraic VOF algorithm. Journal of Computational Physics, 2011, 230(19):7086-7092 doi: 10.1016/j.jcp.2011.06.012
    [18]
    Li S, Sugiyama K, Takeuchi S, et al. An interface capturing method with a continuous function:The THINC method with multidimensional reconstruction. Journal of Computational Physics, 2012, 231(5):2328-2358 doi: 10.1016/j.jcp.2011.11.038
    [19]
    Cassidy DA, Edwards JR, Tian M. An investigation of interfacesharpening schemes for multi-phase mixture flows. Journal of Computational Physics, 2009, 228(16):5628-5649 doi: 10.1016/j.jcp.2009.02.028
    [20]
    Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics (Third Edition). Berlin, Heidelberg:Springer-Verlag, 2009
    [21]
    Johnsen E, Colonius T. Implementation of WENO schemes in compressible multicomponent flow problems. Journal of Computational Physics, 2006, 219(2):715-732 doi: 10.1016/j.jcp.2006.04.018
    [22]
    蒋华, 董刚, 陈霄.小扰动界面形态对RM不稳定性影响的数值分析.力学学报, 2014, 46(4):544-552 doi: 10.6052/0459-1879-13-347

    Jiang Hua, Dong Gang, Chen Xiao. Numerical study on the effects of small-amplitude initial perturbations on RM instability. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):544-552 (in Chinese) doi: 10.6052/0459-1879-13-347
    [23]
    王革, 关奔.激波作用下R22气泡射流现象研究.力学学报, 2013, 45(5):707-715 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract144344.shtml

    Wang Ge, Guan Ben. A study on jet phenomenon of R22 gas cylinder under the impact of shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):707-715 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract144344.shtml
    [24]
    王显圣, 司廷, 罗喜胜等.反射激波冲击重气柱的RM不稳定性数值研究.力学学报, 2012, 44(4):666-674 http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract143475.shtml

    Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):664-672 (in Chinese) http://manu61.magtech.com.cn/lxxb/CN/abstract/abstract143475.shtml
  • Related Articles

    [1]Lu Dechun, Gao Yixin, Wang Guosheng, Song Zhiqiang, Du Xiuli. PERIDYNAMIC METHOD FOR THE INTERFACE IN THE REINFORCED CONCRETE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 403-416. DOI: 10.6052/0459-1879-22-470
    [2]Li Tianyi, Buzzicotti Michele, Biferale Luca, Wan Minping, Chen Shiyi. RECONSTRUCTION OF TURBULENT DATA WITH GAPPY POD METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2703-2711. DOI: 10.6052/0459-1879-21-464
    [3]Yao Chengbao, Fu Meiyan, Han Feng, Yan Kai. NUMERICAL SCHEME OF MULTI-MATERIAL COMPRESSIBLE FLOW WITH SHARP INTERFACE ON EULERIAN GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1063-1079. DOI: 10.6052/0459-1879-20-054
    [4]Manman Zhang, Jiao Sun, Wenyi Chen. AN INTERFACE TRACKING METHOD OF COUPLED YOUNGS-VOF AND LEVEL SET BASED ON GEOMETRIC RECONSTRUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 775-786. DOI: 10.6052/0459-1879-18-439
    [5]Wang Zhao, Yan Hong. UNIFIED GAS-KINETIC SCHEME FOR TWO PHASE INTERFACE CAPTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 711-721. DOI: 10.6052/0459-1879-17-364
    [6]Liu Yilang, Zhang Weiwei, Jiang Yuewen, Ye Zhengyin. A RECONSTRUCTION METHOD FOR FINITE VOLUME FLOW FIELD SOLVING BASED ON INCREMENTAL RADIAL BASIS FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 694-702. DOI: 10.6052/0459-1879-14-028
    [7]Wang Zhengqing Wen-Yan Liang Lv Hongqing. The elastic-viscoplastic field near mode I dynamic propagating crack-tip of interface in double dissimilar materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 417-422. DOI: 10.6052/0459-1879-2011-2-lxxb2010-018
    [8]Reflection and transmission of elastic waves at the interface between a fluid-saturated porous solid and a double porosity solid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 330-338. DOI: 10.6052/0459-1879-2006-3-2005-333
    [9]EXPERIMETAL INVESTIGAIION ON INTERFACE SHEAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(6): 711-718. DOI: 10.6052/0459-1879-1994-6-1995-600
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946
  • Cited by

    Periodical cited type(6)

    1. 张伦,牟斌,蒋浩,王建涛. 气液两相流混合模型代数重构方法. 空气动力学学报. 2023(08): 117-123 .
    2. 丘润荻,王静竹,黄仁芳,杜特专,王一伟,黄晨光. 改进的物理融合神经网络在瑞利-泰勒不稳定性问题中的应用. 力学学报. 2022(08): 2224-2234 . 本站查看
    3. 刘博,李诗尧,陈嘉禹,程启豪,时晓天. 基于映射函数的新型五阶WENO格式. 航空学报. 2022(12): 256-273 .
    4. 任炯,王刚. 一种在网格内部捕捉间断的Walsh函数有限体积方法. 力学学报. 2021(03): 773-788 . 本站查看
    5. 张嫚嫚,孙姣,陈文义. 一种基于几何重构的Youngs-VOF耦合水平集追踪方法. 力学学报. 2019(03): 775-786 . 本站查看
    6. 王昭,严红. 基于气液相界面捕捉的统一气体动理学格式. 力学学报. 2018(04): 711-721 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (1531) PDF downloads (290) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return