EI、Scopus 收录
中文核心期刊
Ma Tianxue, Su Xiaoxing, Dong Haowen, Wang Yuesheng, Zhang Chuanzeng. REVIEW OF BANDGAP CHARACTERISTICS AND ACOUSTO-OPTICAL COUPLING IN PHOXONIC CRYSTALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 743-757. DOI: 10.6052/0459-1879-17-130
Citation: Ma Tianxue, Su Xiaoxing, Dong Haowen, Wang Yuesheng, Zhang Chuanzeng. REVIEW OF BANDGAP CHARACTERISTICS AND ACOUSTO-OPTICAL COUPLING IN PHOXONIC CRYSTALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 743-757. DOI: 10.6052/0459-1879-17-130

REVIEW OF BANDGAP CHARACTERISTICS AND ACOUSTO-OPTICAL COUPLING IN PHOXONIC CRYSTALS

  • Received Date: April 18, 2017
  • Available Online: May 26, 2017
  • Phoxonic crystals are periodic structures which possess photonic and phononic bandgaps simultaneously. Phoxonic crystals can be applied as systematic platforms for manipulating electromagnetic and elastic waves simultaneously, and can be utilized in various fields such as optical, acoustic and acouto-optical devices, and cavity optomechanics. This paper firstly introduces the basic concepts of phoxonic crystals, including the constituting materials, their classifications according to spatial periodicity, the numerical calculation methods of band structures. We elaborate the characteristics of phoxonic dual bandgaps for different systems, and the topology optimization method applied in optimizing the bandgap width of phoxonic dual bandgaps. The field of cavity optomechanics, as well as the quasistatic method and optomechanical coupling coefficient method for evaluating the acousto-optical coupling strength are introduced. The acousto-optical coupling phenomena in various phoxonic crystal structures are summarized. Then this paper introduces the research works related to phoxonic crystal waveguides and sensors. Finally, we outline the prospects of phoxonic crystals based on state of the art, including the enhancements of acousto-optical interaction in phoxonic crystal cavities, the investigations of three-dimensional phoxonic crystals, the designs of different phoxonic metamaterials, the phoxonic crystal device designs and related applications, and so on.
  • [1]
    Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58(20):2059-2062 doi: 10.1103/PhysRevLett.58.2059
    [2]
    John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58(23):2486-2489 doi: 10.1103/PhysRevLett.58.2486
    [3]
    Kushwaha MS, Halevi P, Dobrzynski L, et al. Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71(13):2022-2025 doi: 10.1103/PhysRevLett.71.2022
    [4]
    Qi MH, Lidorikis E, Rakich PT, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991):538-542 doi: 10.1038/nature02575
    [5]
    Khelif A, Choujaa A, Djafari-Rouhani B, et al. Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasoniccrystal. Physical Review B, 2003, 68(21):214301 doi: 10.1103/PhysRevB.68.214301
    [6]
    Notomi M, Yamada K, Shinya A, et al. Extremely large groupvelocity dispersion of line-defect waveguides in photonic crystal slabs. Physical Review Letters, 2001, 87(25):253902 doi: 10.1103/PhysRevLett.87.253902
    [7]
    Khelif A, Wilm M, Laude V, et al. Guided elastic waves along a rod defect of a two-dimensional phononic crystal. Physical Review E, 2004, 69(6):067601 doi: 10.1103/PhysRevE.69.067601
    [8]
    Cubukcu E, Aydin K, Özbay E, et al. Electromagnetic waves:Negative refraction by photonic crystals. Nature, 2003, 423(6940):604-605 https://www.researchgate.net/publication/260626030_Electromagnetic_waves_Negative_refraction_by_photonic_crystals
    [9]
    Yang S, Page JH, Liu Z, et al. Focusing of sound in a 3D phononic crystal. Physical Review Letters, 2004, 93(2):024301 doi: 10.1103/PhysRevLett.93.024301
    [10]
    Yariv A, Yeh P. Öptical Waves in Crystals-Propagation and Control of Laser Radiation. New York:Wiley, 1984
    [11]
    Royer D, Dieulesaint E. Elastic Waves in Solids Ⅱ-Generation Acousto-Öptic Interaction Applications. Berlin:Springer, 2000 http://www.worldcat.org/title/elastic-waves-in-solids-2-generation-acousto-optic-interaction-applications/oclc/313862664
    [12]
    Boyd RW. Nonlinear Öptics. 2nd ed. San Diego:Academic Press, 2003
    [13]
    Damzen MJ, Vlad VI, Babin V, et al. Stimulated Brillouin Scattering. London:IÖP Publishing, 2003
    [14]
    Pennec Y, Laude V, Papanikolaou N, et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3(6):413-440 https://www.researchgate.net/publication/286147838_Modeling_light-sound_interaction_in_nanoscale_cavities_and_waveguides
    [15]
    Sadat-Saleh S, Benchabane S, Baida FI, et al. Tailoring simultaneous photonic and phononic band gaps. Journal of Applied Physics, 2009, 106(7):074912 doi: 10.1063/1.3243276
    [16]
    Eichenfield M, Chan J, Camacho RM, et al. Öptomechanical crystals. Nature, 2009, 462(7269):78-82 doi: 10.1038/nature08524
    [17]
    Maldovan M, Thomas EL. Simultaneous complete elastic and electromagnetic band gaps in periodic structures. Applied Physics B, 2006, 83(4):595-600 doi: 10.1007/s00340-006-2241-y
    [18]
    Maldovan M, Thomas EL. Simultaneous localization of photons and phonons in two-dimensional periodic structures. Applied Physics Letters, 2006, 88(25):251907 doi: 10.1063/1.2216885
    [19]
    Eichenfield M, Camacho R, Chan J, et al. A picogram-and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459(7246):550-556 doi: 10.1038/nature08061
    [20]
    Laude V, Beugnot JC, Benchabane S, et al. Simultaneous guidance of slow photons and slow acoustic phonons in silicon phoxonic crystal slabs. Öptics Express, 2011, 19(10):9690-9698 doi: 10.1364/OE.19.009690
    [21]
    Escalante JM, Martinez A, Laude V. Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 2014, 115(6):064302 doi: 10.1063/1.4864661
    [22]
    Lucklum R, Zubtsov M, Öseev A. Phoxonic crystals-A new platform for chemical and biochemical sensors. Analytical and Bioanalytical Chemistry, 2013, 405(20):6497-6509 doi: 10.1007/s00216-013-7093-9
    [23]
    Gomis-Bresco J, Navarro-Urrios D, Öudich M, et al. A onedimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5:4452 http://www.academia.edu/18427223/A_one-dimensional_optomechanical_crystal_with_a_complete_phononic_band_gap
    [24]
    Kipfstuhl L, Guldner F, Riedrich-Moller J, et al. Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond. Öptics Express, 2014, 22(10):12410-12423 doi: 10.1364/OE.22.012410
    [25]
    Rath P, Ummethala S, Diewald S, et al. Diamond electrooptomechanical resonators integrated in nanophotonic circuits. Applied Physics Letters, 2014, 105(25):251102 doi: 10.1063/1.4901105
    [26]
    Bria D, Assouar MB, Öudich M, et al. Öpening of simultaneous photonic and phononic band gap in two-dimensional square lattice periodic structure. Journal of Applied Physics, 2011, 109(1):014507 doi: 10.1063/1.3530682
    [27]
    Bochmann J, Vainsencher A, Awschalom DD, et al. Nanomechanical coupling between microwave and optical photons. Nature Physics, 2013, 9(11):712-716 doi: 10.1038/nphys2748
    [28]
    王艳锋. 含共振单元声子晶体的带隙特性及设计. [博士论文]. 北京: 北京交通大学, 2015

    Wang Yanfeng. Bandgap properties and design of phononic crystals with resonant units.[PhD thesis]. Beijing:Beijing Jiaotong University, 2015 (in Chinese)
    [29]
    John SG, Fan S, Villeneuve PR, et al. Guided modes in photonic crystal slabs. Physical Review B, 1999, 60(8):5751-5757 doi: 10.1103/PhysRevB.60.5751
    [30]
    Zhou XZ, Wang YS, Zhang CZ. Effects of material parameters on elastic band gaps of two-dimensional solid phononic crystals. Journal of Applied Physics, 2009, 106(1):014903 doi: 10.1063/1.3159644
    [31]
    Zhang X, Li LM, Zhang ZQ, et al. Surface states in two-dimensional metallodielectric photonic crystals studied by a multiple-scattering method. Physical Review B, 2001, 63(12):125114 doi: 10.1103/PhysRevB.63.125114
    [32]
    Liu Z, Chan CT, Sheng P, et al. Elastic wave scattering by periodic structures of spherical objects:Theory and experiment. Physical Review B, 2000, 62(4):2446-2457 doi: 10.1103/PhysRevB.62.2446
    [33]
    Yuan JH, Lu YY. Photonic bandgap calculations with Dirichlet-toNeumann maps. Journal of the Öptical Society of America A, 2006, 23(12):3217-3222 doi: 10.1364/JOSAA.23.003217
    [34]
    Zhen N, Li FL, Wang YS, et al. Bandgap calculation for mixed inplane waves in 2D phononic crystals based on Dirichlet-to-Neumann map. Acta Mechanica Sinica, 2012, 28(4):1143-1153 doi: 10.1007/s10409-012-0092-9
    [35]
    Shi ZJ, Wang YS, Zhang CZ. Band structure calculation of scalar waves in two-dimensional phononic crystals based on generalized multipole technique. Applied Mathematics and Mechanics, 2013, 34(9):1123-1144 doi: 10.1007/s10483-013-1732-6
    [36]
    Shi ZJ, Wang YS, Zhang CZ. Application of the generalized multipole technique in band structure calculation of two-dimensional solid/fluid phononic crystals. Mathematical Methods in the Applied Sciences, 2015, 38(15):1099-1476 doi: 10.1002/mma.3294/references
    [37]
    Li FL, Wang YS, Zhang CZ. Boundary element method for bandgap computation of photonic crystals. Öptics Communications, 2012, 285(5):527-532 https://www.researchgate.net/profile/Yue_Sheng_Wang/publication/256819099_Boundary_element_method_for_bandgap_computation_of_photonic_crystals/links/56022e3108aecb0ce881b3ef.pdf?origin=publication_list
    [38]
    Li FL, Wang YS, Zhang CZ, et al. Boundary element method for band gap calculations of two-dimensional solid phononic crystals. Engineering Analysis with Boundary Elements, 2013, 37(2):225-235 doi: 10.1016/j.enganabound.2012.10.003
    [39]
    Öskooi AF, Roundy D, Ibanescu M, et al. Meep:A flexible freesoftware package for electromagnetic simulations by the FDTD method. Computer Physics Communications, 2010, 181(3):687-702
    [40]
    Taflove A, Hagness SC. Computational Electrodynamics-The Finite-Difference Time-Domain Method. 3rd ed. Norwood:Artech House, 2005
    [41]
    Tanaka Y, Tomoyasu Y, Tamura S. Band structure of acoustic waves in phononic lattices:Two-dimensional composites with large acoustic mismatch. Physical Review B, 2000, 62(11):7387-7392 doi: 10.1103/PhysRevB.62.7387
    [42]
    Su XX, Wang YF, Wang YS. Effects of Poisson's ratio on the band gaps and defect states in two-dimensional vacuum/solid porous phononic crystals. Ultrasonics, 2012, 52(2):255-265 doi: 10.1016/j.ultras.2011.08.010
    [43]
    Andonegui I, Garcia-Adeva AJ. The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities. Öptics Express, 2013, 21(4):4072-4092 doi: 10.1364/OE.21.004072
    [44]
    Khelif A, Aoubiza B, Mohammadi S, et al. Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 2006, 74(4):046610 doi: 10.1103/PhysRevE.74.046610
    [45]
    Wu TT, Hsu JC, Sun JH. Phononic plate waves. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2011, 58(10):2146-2161 doi: 10.1109/TUFFC.2011.2064
    [46]
    Zheng H, Zhang CZ, Wang YS, et al. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. Journal of Computational Physics, 2016, 305:997-1014 doi: 10.1016/j.jcp.2015.10.020
    [47]
    Zheng H, Zhang CZ, Wang YS, et al. Band structure computation of in-plane elastic waves in 2D phononic crystals by a meshfree local RBF collocation method. Engineering Analysis with Boundary Elements, 2016, 66:77-90 doi: 10.1016/j.enganabound.2016.01.012
    [48]
    Trigo M, Bruchhausen A, Fainstein A, et al. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Physical Review Letters, 2002, 89(22):227402 doi: 10.1103/PhysRevLett.89.227402
    [49]
    Psarobas IE, Papanikolaou N, Stefanou N, et al. Enhanced acoustooptic interactions in a one-dimensional phoxonic cavity. Physical Review B, 2010, 82(17):174303 doi: 10.1103/PhysRevB.82.174303
    [50]
    Tang ZH, Jiang ZS, Chen T, et al. Simultaneous microwave photonic and phononic band gaps in piezoelectric-piezomagnetic superlattices with three types of domains in a unit cell. Physics Letters A, 2016, 380:1757-1762 doi: 10.1016/j.physleta.2016.02.037
    [51]
    Qiu M, He S. Öptimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap. Journal of the Öptical Society of America B, 2000, 17(6):1027-1030 doi: 10.1364/JOSAB.17.001027
    [52]
    Chau YF. Intersecting veins effects of a two-dimensional photonic crystal with a large two-dimensional complete bandgap. Öptics Communications, 2009, 282(21):4296-4298 https://www.researchgate.net/publication/232373089_Intersecting_veins_effects_of_a_two-dimensional_photonic_crystal_with_a_large_two-dimensional_complete_bandgap
    [53]
    Chau YF, Wu FL, Jiang ZH, et al. Evolution of the complete photonic bandgap of two-dimensional photonic crystal. Öptics Express, 2011, 19(6):4862-4867 doi: 10.1364/OE.19.004862
    [54]
    Ma TX, Wang YS, Zhang CZ. Investigation of dual photonic and phononic bandgaps in two-dimensional phoxonic crystals with veins. Öptics Communications, 2014, 312:68-72 https://www.researchgate.net/profile/Yue_Sheng_Wang/publication/270691882_Investigation_of_dual_photonic_and_phononic_bandgaps_in_two-dimensional_phoxonic_crystals_with_veins/links/56a077ba08ae2c638eb9db42.pdf?origin=publication_detail
    [55]
    Russell PSJ. Photonic-crystal fibers. Journal of Lightwave Technology, 2006, 24(12):4729-4749 doi: 10.1109/JLT.2006.885258
    [56]
    [57]
    Russell P, Marin E, Diez A, et al. Sonic band gaps in PCF preforms:Enhancing the interaction of sound and light. Öptics Express, 2003, 11(20):2555-2560 doi: 10.1364/OE.11.002555
    [58]
    Dainese P, Russell PS, Wiederhecker GS, et al. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Öptics Express, 2006, 14(9):4141-4150 doi: 10.1364/OE.14.004141
    [59]
    Dainese P, Russell PSJ, Joly N, et al. Stimulated brillouin scattering from multi-Ghz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Physics, 2006, 2(6):388-392 doi: 10.1038/nphys315
    [60]
    Kang MS, Nazarkin A, Brenn A, et al. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Physics, 2009, 5(4):276-280 doi: 10.1038/nphys1217
    [61]
    Laude V, Khelif A, Benchabane S, et al. Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Physical Review B, 2005, 71(4):045107 doi: 10.1103/PhysRevB.71.045107
    [62]
    Wilm M, Khelif A, Ballandras S, et al. Öut-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Physical Review E, 2003, 67(6):065602 doi: 10.1103/PhysRevE.67.065602
    [63]
    Khelif A, Djafari-Rouhani B, Laude V, et al. Coupling characteristics of localized phonons in photonic crystal fibers. Journal of Applied Physics, 2003, 94(12):7944-7946 doi: 10.1063/1.1627946
    [64]
    Chan J, Safavi-Naeini AH, Hill JT, et al. Öptimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 2012, 101(8):081115 doi: 10.1063/1.4747726
    [65]
    Fan LR, Sun XK, Xiong C, et al. Aluminum nitride piezo-acoustophotonic crystal nanocavity with high quality factors. Applied Physics Letters, 2013, 102(15):153507 doi: 10.1063/1.4802250
    [66]
    Davanco M, Ates S, Liu Y, et al. Si3N4 optomechanical crystals in the resolved-sideband regime. Applied Physics Letters, 2014, 104(4):041101 doi: 10.1063/1.4858975
    [67]
    Papanikolaou N, Almpanis E, Gantzounis G, et al. Dual photonicphononic nanocavities for tailoring the acousto-optic interaction. Microelectronic Engineering, 2016, 159:80-83 doi: 10.1016/j.mee.2016.02.067
    [68]
    Pennec Y, Djafari-Rouhani B, Li C, et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Advances, 2011, 1(4):041901 doi: 10.1063/1.3675799
    [69]
    Mohammadi S, Eftekhar AA, Khelif A, et al. Simultaneous twodimensional phononic and photonic band gaps in opto-mechanical crystal slabs. Öptics Express, 2010, 18(9):9164-9172 doi: 10.1364/OE.18.009164
    [70]
    Pennec Y, Djafari-Rouhani B, El Boudouti EH, et al. Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs. Öptics Express, 2010, 18(13):14301-14310 doi: 10.1364/OE.18.014301
    [71]
    Gavartin E, Braive R, Sagnes I, et al. Öptomechanical coupling in a two-dimensional photonic crystal defect cavity. Physical Review Letters, 2011, 106(20):203902 doi: 10.1103/PhysRevLett.106.203902
    [72]
    Li Y, Zheng JJ, Gao J, et al. Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities. Öptics Express, 2010, 18(23):23844-23856 doi: 10.1364/OE.18.023844
    [73]
    El-Jallal S, Öudich M, Pennec Y, et al. Analysis of optomechanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review B, 2013, 88(20):205410 doi: 10.1103/PhysRevB.88.205410
    [74]
    Rolland Q, Dupont S, Gazalet J, et al. Simultaneous bandgaps in LiNbÖ3 phoxonic crystal slab. Öptics Express, 2014, 22(13):16288-16297 doi: 10.1364/OE.22.016288
    [75]
    Safavi-Naeini AH, Painter Ö. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Öptics Express, 2010, 18(14):14926-14943 doi: 10.1364/OE.18.014926
    [76]
    Alegre TPM, Safavi-Naeini A, Winger M, et al. Quasi-twodimensional optomechanical crystals with a complete phononic bandgap. Öptics Express, 2011, 19(6):5658-5669 doi: 10.1364/OE.19.005658
    [77]
    El Hassouani Y, Li C, Pennec Y, et al. Dual phononic and photonic band gaps in a periodic array of pillars deposited on a thin plate.Physical Review B, 2010, 82(15):155405 doi: 10.1103/PhysRevB.82.155405
    [78]
    Papanikolaou N, Psarobas IE, Stefanou N. Absolute spectral gaps for infrared light and hypersound in three-dimensional metallodielectric phoxonic crystals. Applied Physics Letters, 2010, 96(23):231917 doi: 10.1063/1.3453448
    [79]
    Akimov AV, Tanaka Y, Pevtsov AB, et al. Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials. Physical Review Letters, 2008, 101(3):033902 doi: 10.1103/PhysRevLett.101.033902
    [80]
    Ma TX, Wang YS, Wang YF, et al. Three-dimensional dielectric phoxonic crystals with network topology. Öptics Express, 2013, 21(3):2727-2732 doi: 10.1364/OE.21.002727
    [81]
    Zhang X, Zhang ZQ, Chan CT. Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals. Physical Review B, 2001, 63(8):081105 doi: 10.1103/PhysRevB.63.081105
    [82]
    Bayindir M, Cubukcu E, Bulu I, et al. Photonic band-gap effect, localization, and waveguiding in the two-dimensional penrose lattice. Physical Review B, 2001, 63(16):161104 doi: 10.1103/PhysRevB.63.161104
    [83]
    Wang Y, Hu X, Xu X, et al. Localized modes in defect-free dodecagonal quasiperiodic photonic crystals. Physical Review B, 2003, 68(16):165106 doi: 10.1103/PhysRevB.68.165106
    [84]
    Della Villa A, Enoch S, Tayeb G, et al. Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice. Physical Review Letters, 2005, 94(18):183903 doi: 10.1103/PhysRevLett.94.183903
    [85]
    Ledermann A, Wegener M, von Freymann G. Rhombicuboctahedral three-dimensional photonic quasicrystals. Advanced Materials, 2010, 22(21):2363-2366 doi: 10.1002/adma.200903885
    [86]
    Lai Y, Zhang X, Zhang ZQ. Large sonic band gaps in 12-fold quasicrystals. Journal of Applied Physics, 2002, 91(9):6191-6193 doi: 10.1063/1.1465114
    [87]
    Sutter-Widmer D, Deloudi S, Steurer W. Prediction of braggscattering-induced band gaps in phononic quasicrystals. Physical Review B, 2007, 75(9):094304 doi: 10.1103/PhysRevB.75.094304
    [88]
    Chen AL, Wang YS, Guo YF, et al. Band structures of Fibonacci phononic quasicrystals. Solid State Communications, 2008, 145(3):103-108 doi: 10.1016/j.ssc.2007.10.023
    [89]
    Peng SS, Mei XF, Pang P, et al. Experimental investigation of negative refraction and imaging of 8-fold-symmetry phononic quasicrystals. Solid State Communications, 2009, 149(17-18):667-669 doi: 10.1016/j.ssc.2009.02.022
    [90]
    Zhang MD, Zhong W, Zhang XD. Defect-free localized modes and coupled-resonator acoustic waveguides constructed in twodimensional phononic quasicrystals. Journal of Applied Physics, 2012, 111(10):104314 doi: 10.1063/1.4721372
    [91]
    Feng ZF, Zhang XD, Wang YQ, et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Physical Review Letters, 2005, 94(24):247402 doi: 10.1103/PhysRevLett.94.247402
    [92]
    Yu T, Wang Z, Liu W, et al. Simultaneous large band gaps and localization of electromagnetic and elastic waves in defect-free quasicrystals. Öptics Express, 2016, 24(8):7951-7959 doi: 10.1364/OE.24.007951
    [93]
    Wang Z, Liu WX, Yu TB, et al. Simultaneous localization of photons and phonons within the transparency bands of LiNbÖ3 phoxonic quasicrystals. Öptics Express, 2016, 24(20):23353-23360 doi: 10.1364/OE.24.023353
    [94]
    Dong HW, Wang YS, Ma TX, et al. Topology optimization of simultaneous photonic and phononic bandgaps and highly effective phoxonic cavity. Journal of the Öptical Society of America B, 2014, 31(12):2946-2955 doi: 10.1364/JOSAB.31.002946
    [95]
    Zhang S, Yin J, Zhang HW, et al. Multi-objective optimization of two-dimensional phoxonic crystals with multi-level substructure scheme. International Journal of Modern Physics B, 2016, 30(9):1650046 doi: 10.1142/S0217979216500466
    [96]
    Dong HW, Wang YS, Zhang CZ. Topology optimization of chiral phoxonic crystals with simultaneously large phononic and photonic bandgaps. IEEE Photonics Journal, 2017, 9(2):4700116 https://www.researchgate.net/publication/313485801_Topology_optimization_of_chiral_phoxonic_crystals_with_simultaneously_large_phononic_and_photonic_bandgaps
    [97]
    Maiman TH. Stimulated optical radiation in ruby. Nature, 1960, 187:493-494 doi: 10.1038/187493a0
    [98]
    Kippenberg TJ, Vahala KJ. Cavity opto-mechanics. Öptics Express, 2007, 15(25):17172-17205 doi: 10.1364/OE.15.017172
    [99]
    Kippenberg TJ, Vahala KJ. Cavity optomechanics:Back-action at the mesoscale. Science, 2008, 321(5893):1172-1176 doi: 10.1126/science.1156032
    [100]
    Metcalfe M. Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1(3):031105 doi: 10.1063/1.4896029
    [101]
    Aspelmeyer M, Kippenberg TJ, Marquard F. Cavity optomechanics. Reviews of Modern Physics, 2014, 86(4):1391-1452 doi: 10.1103/RevModPhys.86.1391
    [102]
    Cleland AN, Roukes ML. External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sensors and Actuators A, 1999, 72(3):256-261 doi: 10.1016/S0924-4247(98)00222-2
    [103]
    Cleland AN, Roukes ML. Noise processes in nanomechanical resonators. Journal of Applied Physics, 2002, 92(5):2758-2769 doi: 10.1063/1.1499745
    [104]
    Abramovici1 A, Althouse1 WE, Drever RWP, et al. LIGÖ:The laser interferometer gravitational wave observatory. Science, 1992, 256(5055):325-333 doi: 10.1126/science.256.5055.325
    [105]
    Arcizet Ö, Cohadon PF, Briant T, et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature, 2006, 444(7115):71-74 doi: 10.1038/nature05244
    [106]
    Gigan S, Bohm HR, Paternostro M, et al. Self-cooling of a micromirror by radiation pressure. Nature, 2006, 444(7115):67-70 doi: 10.1038/nature05273
    [107]
    Kippenberg TJ, Rokhsari H, Carmon T, et al. Analysis of radiationpressure induced mechanical oscillation of an optical microcavity. Physical Review Letters, 2005, 95(3):033901 doi: 10.1103/PhysRevLett.95.033901
    [108]
    Schliesser A, Del'haye P, Nooshi N, et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Physical Review Letters, 2006, 97(24):243905 doi: 10.1103/PhysRevLett.97.243905
    [109]
    Camacho RM, Chan J, Eichenfield M, et al. Characterization of radiation pressure and thermal effects in a nanoscale optomechanical cavity. Öptics Express, 2009, 17(18):15726-15735 doi: 10.1364/OE.17.015726
    [110]
    Eichenfield M. Cavity optomechanics in photonic and phononic crystals:engineering the interaction of light and sound at the nanoscale.[PhD thesis]. Pasadena:California Institute of Technology, 2010
    [111]
    Tsvirkun V. Öptomechanics in hybrid fully-integrated twodimensional photonic crystal resonators.[PhD Thesis]. Paris:Université Paris-Sud XI, 2015
    [112]
    Almpanis E, Papanikolaou N, Stefanou N. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities. Öptics Express, 2014, 22(26):31595-31607 doi: 10.1364/OE.22.031595
    [113]
    Rolland Q, Öudich M, El-Jallal S, et al. Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters, 2012, 101(6):061109 doi: 10.1063/1.4744539
    [114]
    El-Jallal S, Öudich M, Pennec Y, et al. Öptomechanical interactions in two-dimensional si and gaas phoxonic cavities. Journal of Physics-Condensed Matter, 2014, 26(1):015005 doi: 10.1088/0953-8984/26/1/015005
    [115]
    Ma TX, Zou K, Wang YS, et al. Acousto-optical interaction of surface acoustic and optical waves in a two-dimensional phoxonic crystal hetero-structure cavity. Öptics Express, 2014, 22(23):28443-28451 doi: 10.1364/OE.22.028443
    [116]
    Öudich M, El-Jallal S, Pennec Y, et al. Öptomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 2014, 89(24):245122
    [117]
    Li YZ, Cui KY, Feng X, et al. Öptomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Öptics, 2015, 17(4):045001 https://www.researchgate.net/publication/306474245_Optomechanical_crystal_nanobeam_cavity_with_high_optomechanical_coupling_rate
    [118]
    Lin TR, Lin CH, Hsu JC. Strong optomechanical interaction in hybrid plasmonic-photonic crystal nanocavities with surface acoustic waves. Scientific Reports, 2015, 5:13782 doi: 10.1038/srep13782
    [119]
    Huang ZL, Cui KY, Li YZ, et al. Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals. Scientific Reports, 2015, 5:15964 doi: 10.1038/srep15964
    [120]
    Hsu JC, Lu TY, Lin TR. Acousto-optic coupling in phoxonic crystal nanobeam cavities with plasmonic behavior. Öptics Express, 2015, 23(20):25814-25826 doi: 10.1364/OE.23.025814
    [121]
    Chan J, Alegre TPM, Safavi-Naeini AH, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478(7367):89-92 doi: 10.1038/nature10461
    [122]
    Safavi-Naeini AH, Groblacher S, Hill JT, et al. Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500(7461):185-189 doi: 10.1038/nature12307
    [123]
    Wu M, Hryciw AC, Healey C, et al. Dissipative and dispersive optomechanics in a nanocavity torque sensor. Physical Review X, 2014, 4(2):021052 doi: 10.1103/PhysRevX.4.021052
    [124]
    Balram KC, Davanco M, Lim JY, et al. Moving boundary and photoelastic coupling in gaas optomechanical resonators. Öptica, 2014, 1(6):414-420 https://www.researchgate.net/publication/265967123_Moving_boundary_and_photoelastic_coupling_in_GaAs_optomechanical_resonators
    [125]
    Grutter KE, Davanco MI, Srinivasan K. Slot-mode optomechanical crystals:A versatile platform for multimode optomechanics. Öptica, 2015, 2(11):994-1001 http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=919162
    [126]
    Schneider K, Seidler P. Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factorto-mode volume ratio. Öptics Express, 2016, 24(13):13850-13865 doi: 10.1364/OE.24.013850
    [127]
    Huang Z, Cui K, Bai G, et al. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide. Scientific Reports, 2016, 6:34160 doi: 10.1038/srep34160
    [128]
    Nomura M. GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Öptics Express, 2012, 20(5):5204-5212 doi: 10.1364/OE.20.005204
    [129]
    Zheng JJ, Sun XK, Li Y, et al. Femtogram dispersive L3-nanobeam optomechanical cavities:Design and experimental comparison. Öptics Express, 2012, 20(24):26486-26498 doi: 10.1364/OE.20.026486
    [130]
    Sun XK, Zheng JJ, Poot M, et al. Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity. Nano Letters, 2012, 12(5):2299-2305 doi: 10.1021/nl300142t
    [131]
    Shimizu W, Nagai N, Kohno K, et al. Waveguide coupled air-slot photonic crystal nanocavity for optomechanics. Öptics Express, 2013, 21(19):21961-21969 doi: 10.1364/OE.21.021961
    [132]
    Pitanti A, Fink JM, Safavi-Naeini AH, et al. Strong opto-electromechanical coupling in a silicon photonic crystal cavity. Öptics Express, 2015, 23(3):3196-3208 doi: 10.1364/OE.23.003196
    [133]
    Safavi-Naeini AH, Hill JT, Meenehan S, et al. Two-dimensional phononic-photonic band gap optomechanical crystal cavity. Physical Review Letters, 2014, 112:153603 doi: 10.1103/PhysRevLett.112.153603
    [134]
    Hsiao FL, Hsieh CY, Hsieh HY, et al. High-efficiency acoustooptical interaction in phoxonic nanobeam waveguide. Applied Physics Letters, 2012, 100(17):171103 doi: 10.1063/1.4705295
    [135]
    Lin TR, Lin CH, Hsu JC. Enhanced acousto-optic interaction in twodimensional phoxonic crystals with a line defect. Journal of Applied Physics, 2013, 113(5):053508 doi: 10.1063/1.4790288
    [136]
    Safavi-Naeini AH, Painter Ö. Proposal for an optomechanical traveling wave phonon-photon translator. New Journal of Physics, 2011, 13:013017 doi: 10.1088/1367-2630/13/1/013017
    [137]
    Ma TX, Wang YS, Zhang CZ. Simultaneous guiding of slow elastic and light waves in three-dimensional topology-type phoxonic crystals with a line defect. Journal of Öptics, 2014, 16(8):085002 https://www.researchgate.net/publication/225587630_Simultaneous_complete_elastic_and_electromagnetic_band_gaps_in_periodic_structures
    [138]
    Amoudache S, Pennec Y, Djafari-Rouhani B, et al. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoxonic crystal with defects. Journal of Applied Physics, 2014, 115(13):134503 doi: 10.1063/1.4870861
    [139]
    Amoudache S, Moiseyenko R, Pennec Y, et al. Öptical and acoustic sensing using fano-like resonances in dual phononic and photonic crystal plate. Journal of Applied Physics, 2016, 119(11):114502 doi: 10.1063/1.4944600
    [140]
    Ma TX, Wang YS, Zhang CZ, et al. Theoretical research on a twodimensional phoxonic crystal liquid sensor by utilizing surface optical and acoustic waves. Sensors and Actuators A, 2016, 242:123-131 doi: 10.1016/j.sna.2016.03.003
    [141]
    Kalaee M, Paraïso TK, Pfeifer H. Design of a quasi-2D photonic crystal optomechanical cavity with tunable, large x2-coupling. Öptics Express, 2016, 24(19):21308-21328 doi: 10.1364/OE.24.021308
  • Related Articles

    [1]Wang Xun, Hu Chenghao, Fan Haitao, Zhang Zekun, Li Qing. RESEARCH ON DYNAMICS OF DOUBLE BUBBLES IN ELASTIC CAVITY DRIVEN BY ULTRASOUND[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(8): 1-12. DOI: 10.6052/0459-1879-25-127
    [2]Liu Hao, Qu Yegao, Meng Guang. FLUID-STRUCTURE-ACOUSTIC ANALYSIS OF A COMPOSITE PANEL-CAVITY SYSTEM SUBJECTED TO AN OBLIQUE SHOCK IMPACT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1752-1761. DOI: 10.6052/0459-1879-23-546
    [3]An Xinlei, Ren Yanlan. DYNAMICS OF FILIPPOV CHAY NEURON BASED ON THRESHOLD CONTROL STRATEGY AND COUPLING SYNCHRONIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1068-1087. DOI: 10.6052/0459-1879-23-405
    [4]Qiu Kepeng, Chen Zhimou, Zhang Jiangang, Zhang Weihong, Yan Qun, Sun Xiangyang, Peng Tao. BANDGAP OPTIMIZATION DESIGN OF PHONONIC CRYSTALS BASED ON SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1278-1287. DOI: 10.6052/0459-1879-23-024
    [5]Lu Yiming, Cao Dongxing, Shen Yongjun, Chen Xumin. STUDY ON THE BANDGAPS OF DEFECT STATES AND APPLICATION OF ENERGY HARVESTING OF LOCAL RESONANT PHONONIC CRYSTAL PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1114-1123. DOI: 10.6052/0459-1879-20-436
    [6]Jiaxing Lu, Yingjie Wei, Cong Wang, Lirui Lu, Hao Xu. EXPERIMENTAL STUDY ON CAVITY EVOLUTION CHARACTERISTICS IN THE WATER-ENTRY PROCESS OF PARALLEL CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461. DOI: 10.6052/0459-1879-18-288
    [7]Chen Weiqi, Wang Baoshou, Yan Kai, Yi Shuqun. STUDY ON THE UNSTEADY VERTICAL CAVITY OF THE EXIT-WATER CAVITOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 76-82. DOI: 10.6052/0459-1879-12-164
    [8]Zhao Xiaodong Zhang Kai Tian Fuzhen. Research on the deposition efficiency of nanoparticle in human nasal cavity[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 482-487. DOI: 10.6052/0459-1879-2011-3-lxxb2010-512
    [9]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(8)

    1. 黄坤琦,林懿然,赖耘,刘晓宙. Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks. Chinese Physics B. 2024(10): 337-344 .
    2. 李林,张雪彬,刘涛,章俊. 弯曲波宽频分波超栅拓扑优化设计和表征. 力学学报. 2023(01): 148-158 . 本站查看
    3. 周云英,刘东滢,侯定贵. 多铁性扇环截面柱体中的波传播. 固体力学学报. 2023(01): 120-132 .
    4. 王凯,周加喜,蔡昌琦,徐道临,文桂林. 低频弹性波超材料的若干进展. 力学学报. 2022(10): 2678-2694 . 本站查看
    5. 郝玉良. 基于时域有限差分法的光子晶体波导微腔耦合研究. 韶关学院学报. 2022(12): 30-34 .
    6. 陈阿丽,王新萌,汪越胜. 圆弧形超表面对透射声波的可调控制与功能转换. 力学学报. 2021(03): 789-801 . 本站查看
    7. 曹蕾蕾,朱旺,武建华,张传增. 基于人工神经网络的声子晶体逆向设计. 力学学报. 2021(07): 1992-1998 . 本站查看
    8. 修晨曦,楚锡华. 基于微形态模型的颗粒材料中波的频散现象研究. 力学学报. 2018(02): 315-328 . 本站查看

    Other cited types(13)

Catalog

    Article Metrics

    Article views (2906) PDF downloads (1497) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return