Citation: | Zhang Shu, Xu Jian. REVIEW ON NONLINEAR DYNAMICS IN SYSTEMS WITH COULPLING DELAYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587. DOI: 10.6052/0459-1879-17-123 |
[1] |
Xu J, Chung KW. Dynamics for a class of nonlinear systems with time delay. Chaos, Solitons and Fractals, 2009, 40(1):28-49 doi: 10.1016/j.chaos.2007.07.032
|
[2] |
胡海岩, 王在华.非线性时滞动力系统的研究进展.力学进展, 1999, 29:501-512 doi: 10.6052/1000-0992-1999-4-J1998-103
Hu Haiyan, Wang Zaihua. Review on nonlinear dynamic systems involving time delays. Advances in Mechanics, 1999, 29:501-512 (in Chinese) doi: 10.6052/1000-0992-1999-4-J1998-103
|
[3] |
徐鉴, 裴利军.时滞系统动力学近期研究进展与展望.力学进展, 2006, 36:17-30 doi: 10.6052/1000-0992-2006-1-J2005-095
Xu Jian, Pei Lijun. Advances in dynamics for delayed systems. Advances in Mechanics, 2006, 36:17-30 (in Chinese) doi: 10.6052/1000-0992-2006-1-J2005-095
|
[4] |
Liu ZH, Payre G. Stability analysis of doubly regenerative cylindrical grinding process. Journal of Sound and Vibration, 2007, 301(3-5):950-962 doi: 10.1016/j.jsv.2006.10.041
|
[5] |
Sipahi R, Atay FM, Niculescu SI. Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers. SIAM Journal of Applied Mathematics, 2007, 68(3-5):738-759 https://www.researchgate.net/publication/45062660_Stability_of_Traffic_Flow_Behavior_with_Distributed_Delays_Modeling_the_Memory_Effects_of_the_Drivers
|
[6] |
王在华, 胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用.力学进展, 2013, 43(1):3-19 doi: 10.6052/1000-0992-12-018
Wang Zaihua, Hu Haiyan. Stability and bifurcation of delayed dynamic systems:from theory to application. Advances in Mechanics, 2013, 43(1):3-19 (in Chinese) doi: 10.6052/1000-0992-12-018
|
[7] |
徐鉴.振动控制研究进展综述.力学季刊, 2015, 36(4):547-565 http://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201504001.htm
Xu Jian. Advances of research on vibration control. Chinese Quarterly of Mechanics, 2015, 36(4):547-565 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201504001.htm
|
[8] |
Erzgraber E, Krauskopf B, Lenstra D. Bifurcation analysis of a semiconductor laser with filtered optical feedback. SIAM Journal of Applied systems, 2007, 6(1):1-28 doi: 10.1137/060656656
|
[9] |
Green K. Stability near threshold in a semiconductor laser subject to optical feedback:a bifurcation analysis of the Lang-Kobayashi equations. Physical Review E, 2009, 79(3):036210 doi: 10.1103/PhysRevE.79.036210
|
[10] |
Campbell SA, Yuan Y. Zero singularities of codimension two and three in delay differential equations. Nonlinearity, 2008, 21(11):2671-2691 doi: 10.1088/0951-7715/21/11/010
|
[11] |
Xu J, Chung KW. A perturbation-incremental scheme for studying Hopf bifurcation in delayed differential systems. Science in China Series E, 2009, 52(3):698-708 doi: 10.1007/s11431-009-0052-1
|
[12] |
Xu J, Chung KW. An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks. SIAM Journal on Applied Systems, 2007, 6(1):29-60 doi: 10.1137/040614207
|
[13] |
Xu J, Chung KW. Double Hopf bifurcation with strong resonances in delayed systems with nonlinearities. Mathematical Problems in Engineering, 2009, 2009(4):266-287 https://www.researchgate.net/publication/40892243_Double_Hopf_Bifurcation_with_Strong_Resonances_in_Delayed_Systems_with_Nonlinerities
|
[14] |
Liu ZH, Zhu WQ. Compensation for time-delayed feedback bangbang control of quasi-integrable Hamiltonian systems. Science in China Series E, 2009, 52(3):688-697 doi: 10.1007/s11431-009-0035-2
|
[15] |
Zhen B, Xu J. Fold-Hopf bifurcation analysis for a coupled FitzHugh-Nagumo neural system with time delay. International Journal of Bifurcation and Chaos, 2010, 20(12):3919-3914 doi: 10.1142/S0218127410028112
|
[16] |
Wang WY, Xu J. Multiple scales analysis for double Hopf Bifurcation with 1:3 resonance. Nonlinear Dynamics, 2011, 66(1-2):39-51 doi: 10.1007/s11071-010-9909-x
|
[17] |
Wang WY, Xu J. Strong and weak resonances in delayed differential systems. International Journal of Bifurcation and Chaos, 2013, 23(7):1350119 doi: 10.1142/S0218127413501198
|
[18] |
Song ZG, Xu J. Stability switches and double Hopf bifurcation in a two-neural network system with multiple delays. Cognitive Neurodynamics, 2013, 7(6):505-521 doi: 10.1007/s11571-013-9254-0
|
[19] |
Song YL, Han Y, Peng Y. Stability and Hopf bifurcation in an unidirectional ring of n neurons with distributed delays. Neurocomputing, 2013, 121(2):442-452 https://www.researchgate.net/publication/257633383_Stability_and_Hopf_bifurcation_in_a_three-neuron_unidirectional_ring_with_distributed_delays
|
[20] |
Chen YL, Xu J. Applications of the integral equation method to delay differential equations. Nonlinear Dynamics, 2013, 73(4):2241-2260 doi: 10.1007/s11071-013-0938-0
|
[21] |
Li JY, Zhang L, Wang ZH. A simple algorithm for the stability testing of periodic solutions of some nonlinear oscillators with large time-delay. Science in China Series E:Technological Sciences, 2011, 54(8):2033-2043 doi: 10.1007/s11431-011-4487-9
|
[22] |
Wang ZH. A very simple criterion for characterizing the crossing direction of time-delay systems with delay-dependent parameters. International Journal of Bifurcation and Chaos, 2012, 22(3):1250048 doi: 10.1142/S0218127412500484
|
[23] |
Zhang L, Wang HL, Hu HY. Symbolic computation of normal form for Hopf bifurcation in a retarded functional differential equation with unknown parameters. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(8):3328-3344 doi: 10.1016/j.cnsns.2011.11.035
|
[24] |
Zhang L, Wang HL, Wang ZH. Symbolic computation of normal form for Hopf bifurcationin a neutral delay differential equation and an applicationto a controlled crane. Nonlinear Dynamics, 2012, 70(1):463-473 doi: 10.1007/s11071-012-0468-1
|
[25] |
Yan Y, Xu J, Wang WY. Nonlinear chatter with large amplitude in a cylindrical plunge grinding process. Nonlinear Dynamics, 2012, 69(4):1781-1793 doi: 10.1007/s11071-012-0385-3
|
[26] |
Yan Y, Xu J, Wiercigroch M. Chatter in a transverse grinding process. Journal of Sound and Vibration, 2014, 333(3):937-953 doi: 10.1016/j.jsv.2013.09.039
|
[27] |
Ge JH, Xu J. Hopf bifurcation and chaos in an inertial neuron system with coupled delay. Science China:Technological Sciences, 2013, 56(9):2299-2309 doi: 10.1007/s11431-013-5316-0
|
[28] |
Ge JH, Xu J. Weak resonant double Hopf bifurcations in an inertial four-neuron model with time delay. International Journal of Neural Systems, 2012, 22(1):63-75 doi: 10.1142/S0129065712002980
|
[29] |
Ge JH, Xu J. Stability switches and fold-Hopf bifurcations in an inertial four-neuron network model with coupling delay. Neurocomputing, 2013, 110(8):70-79 https://www.researchgate.net/publication/257352421_Stability_switches_and_fold-Hopf_bifurcations_in_an_inertial_four-neuron_network_model_with_coupling_delay
|
[30] |
Jiang J, Song YL. Bogdanov-Takens bifurcation in an oscillator with negative damping and delayed position feedback. Applied Mathematical Modelling, 2013, 37(16-17):8091-8105 doi: 10.1016/j.apm.2013.03.034
|
[31] |
Song ZG, Xu J. Stability switches and Bogdanov-Takens bifurcation in an inertial two-neurons coupling system with multiple delays. Science China:Technological Sciences, 2014, 57(5):893-904 doi: 10.1007/s11431-014-5536-y
|
[32] |
Song ZG, Xu J. Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dynamics, 2012, 67(1):309-328 doi: 10.1007/s11071-011-9979-4
|
[33] |
Song ZG, Xu J. Stability switches and multistability coexistence in a delay-coupled neural oscillators system. Journal of Theoretical Biology, 2012, 313(21):98-114 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201205003347.htm
|
[34] |
徐鉴, 陈振.时滞对轴流压气机喘振的影响.中国科学:物理学力学天文学, 2013, 43(4):380-389 http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304006.htm
Xu Jian, Chen Zhen. Effects of delay on surge in axial compressors. Science in China (Series G), 2013, 43(4):380-389(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201304006.htm
|
[35] |
Zhen B, Xie WP, Xu J. A nonlinear analysis for the lateral vibration of footbridges induced by pedestrians. ASCE:Journal of Bridge Engineering, 2013, 18(2):122-130 doi: 10.1061/(ASCE)BE.1943-5592.0000313
|
[36] |
Zhen B, Wong WK, Xu J, et al. Application of Nakamura's model to describe the delayed increase in lateral vibration of footbridges. ASCE:Journal of Engineering Mechanics, 2012, 139(12):1708-1713 https://www.researchgate.net/publication/229147445_Parametric_resonance_of_flexible_footbridges_under_crowd-induced_lateral_excitation
|
[37] |
Zhen B, Luo W, Xu J. Analysis of critical velocities for an infinite timoshenko beam resting on an elastic foundation subjected to a harmonic moving load. Shock and Vibration, 2014, 2014(2):848536 https://www.researchgate.net/profile/Bin_Zhen2/publication/267028895_Analysis_of_Critical_Velocities_for_an_Infinite_Timoshenko_Beam_Resting_on_an_Elastic_Foundation_Subjected_to_a_Harmonic_Moving_Load/links/547cba5b0cf2cfe203c1fba3.pdf?disableCoverPage=true
|
[38] |
Hu HY. Using delayed state feedback to stabilize periodic motions of an oscillator. Journal of Sound and Vibration, 2004, 275(s3-5):1009-1025 https://www.researchgate.net/publication/256799922_Using_delayed_state_feedback_to_stabilize_periodic_motions_of_an_oscillator
|
[39] |
Xu J, Chung KW. Effects of time delayed position feedback on a van der Pol-Duffing oscillator. Physica D, 2003, 180(1-2):17-39 doi: 10.1016/S0167-2789(03)00049-6
|
[40] |
Liu B, Hu HY. Group delay induced instabilities and Hopf bifurcations of a controlled double pendulum. International Journal of Non-Linear Mechanics, 2010, 45(4):442-452 doi: 10.1016/j.ijnonlinmec.2010.01.001
|
[41] |
Ohta T, Murakami T. A Stabilization control of bilateral system with time delay by vibration index-application to inverted pendulum Control. IEEE Transactions on Industrial Electronics, 2009, 56(5):1595-1603 doi: 10.1109/TIE.2008.2009991
|
[42] |
Landry M, Campbell SA, Morris K, et al. Dynamics of an inverted pendulum with delayed feedback control. SIAM Journal on Applied Dynamical Systems, 2005, 4(2):333-351 doi: 10.1137/030600461
|
[43] |
Campbell SA, Crawford S, Morris K. Friction and the inverted pendulum stabilization problem. Journal of Dynamic Systems Measurement and Control, 2008, 130(5):054502 doi: 10.1115/1.2957631
|
[44] |
Olgac N, Holm-Hansen BT. A novel active vibration absorption technique:delayed resonator. Journal of Sound and Vibration, 1994, 176(1):93-104 doi: 10.1006/jsvi.1994.1360
|
[45] |
Filipović D, Olgac N. Delayed resonator with speed feedback including dual frequency-theory and experiments//Proceedings of the 36th Conference on Decision & Control, 1997:2535-2540
|
[46] |
赵艳影, 徐鉴.时滞动力吸振器及其对主系统振动的影响.振动工程学报, 2006, 19(4):548-552 http://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201602012.htm
Zhao Yanying, Xu Jian. Delayed resonator and its effects on vibrations in primary system. Journal of Vibration Engineering, 2006, 19(4):548-552(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201602012.htm
|
[47] |
Zhao YY, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system. Journal of Sound and Vibration, 2007, 308:212-230 doi: 10.1016/j.jsv.2007.07.041
|
[48] |
赵艳影, 徐鉴.时滞非线性动力吸振器的减振机理.力学学报, 2008, 40(1):98-106 doi: 10.6052/0459-1879-2008-1-2007-078
Zhao Yanying, Xu Jian. Mechanism analysis of delayed nonlinear vibration absorber. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1):98-106(in Chinese) doi: 10.6052/0459-1879-2008-1-2007-078
|
[49] |
Zhang XX, Xu J. Identification of time delay in nonlinear systems with delayed feedback control. Journal of the Franklin Institute, 2015, 352(8):2987-2998 doi: 10.1016/j.jfranklin.2014.04.016
|
[50] |
Zhang XX, Xu J, Huang Y. Experiment on parameter identification of a time delayed vibration absorber. IFAC Papersonline, 2015, 48(12):57-62 doi: 10.1016/j.ifacol.2015.09.353
|
[51] |
Zhang X, Xu J, Feng Z. Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dynamics, 2017, 88(2):937-954 doi: 10.1007/s11071-016-3286-z
|
[52] |
Sun YX, Xu J. Experiments and analysis for a controlled mechanical absorber considering delay effect. Journal of Sound and Vibration, 2015, 339:25-37 doi: 10.1016/j.jsv.2014.11.005
|
[53] |
Xu J, Sun YX. Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mechanica Sinica, 2015, 31(2):229-247 doi: 10.1007/s10409-015-0411-z
|
[54] |
Sun XT, Xu J, Jing XJ, et al. Beneficial performance of a quasi-zerostiffness vibration isolator with time-delayed active control. International Journal of Mechanical Science, 2014, 82(1):32-40 https://www.researchgate.net/publication/260608904_Beneficial_Performance_of_a_Quasi-Zero-Stiffness_Vibration_Isolator_with_Time-Delayed_Active_Control
|
[55] |
Sun XT, Jing XJ, Xu J, et al. Vibration isolation via a scissor-like structured platform. Journal of Sound and Vibration, 2014, 333(9):2404-2420 doi: 10.1016/j.jsv.2013.12.025
|
[56] |
Sun XT, Jing XJ, Xu J, et al. A quasi-zero-stiffness-based sensor system in vibration measurement. IEEE Transactions on Industrial Electronics, 2014, 61(10):5606-5614 doi: 10.1109/TIE.2013.2297297
|
[57] |
Sun XT, Jing XJ, Xu J, et al. A 3D quasi-zero-stiffness based sensor system for absolute motion measurement and application in active vibration control. IEEE/ASME Transactions on Mechatronics, 2015, 20(1):254-262 doi: 10.1109/TMECH.2014.2338932
|
[58] |
Song ZG, Xu J. Bifurcation and chaos analysis on a delayed twoneural network with the variation slope ratio in activation function. International Journal of Bifurcation and Chaos, 2012, 22(5):1250105 doi: 10.1142/S0218127412501052
|
[59] |
Zhao YY, Xu J. Using the delayed feedback control and saturation control to suppress the vibration of the dynamical system. Nonlinear Dynamics, 2012, 67:735-753 doi: 10.1007/s11071-011-0023-5
|
[60] |
赵艳影, 徐鉴.利用时滞反馈控制自参数振动系统的振动.力学学报, 2011, 43 (5):894-904 doi: 10.6052/0459-1879-2011-5-lxxb2010-652
Zhao Yanying, Xu Jian. Using the delayed feedback to control the vibration of the auto-parametric dynamical system. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5):894-904(in Chinese) doi: 10.6052/0459-1879-2011-5-lxxb2010-652
|
[61] |
Yan Y, Xu J. Suppression of regenerative chatter in a plungegrinding process by spindle speed. Journal of Manufacturing Science & Engineering, 2013, 135(4):041019 https://www.researchgate.net/publication/259192519_Suppression_of_Regenerative_Chatter_in_a_Plunge-Grinding_Process_by_Spindle_Speed
|
[62] |
Zhang S, Xu J. Time-vary delayed feedback control for an Internet congestion control model. Discrete and Continuous Dynamical Systems-Series B, 2011, 2(2):653-668 https://www.researchgate.net/publication/267076138_Time-varying_delayed_feedback_control_for_an_internet_congestion_control_model
|
[63] |
Zhang S, Xu J. Oscillation control for n-dimensional congestion control model via time-varying delay. Science in China Series E:Technological Sciences, 2011, 54(8):2044-2053 doi: 10.1007/s11431-011-4488-8
|
[64] |
Zhang S, Xu J. Bursting-like motion induced by time-varying delay in an internet congestion control model. Acta Mechanica Sinica, 2012, 28(4):1169-1179 doi: 10.1007/s10409-012-0128-1
|
[65] |
Zhang S, Xu J. Oscillatory dynamics induced by time delay in an internet congestion control model with ring topology. Applied Mathematics and Computation, 2012, 281(22):11033-11041 https://www.researchgate.net/publication/256936669_Oscillatory_dynamics_induced_by_time_delay_in_an_internet_congestion_control_model_with_ring_topology
|
[66] |
Zhang S, Xu J. Quasiperiodic motion induced by heterogeneous delays in a simplified internet congestion control model. Nonlinear Analysis:Real World Applications, 2013, 14(1):661-670 doi: 10.1016/j.nonrwa.2012.07.024
|
[67] |
Zhang S, Chung KW, Xu J. Stability switch boundaries in an internet congestion control model with diverse time delays. International Journal of Bifurcation and Chaos, 2013, 23(5):1330016 doi: 10.1142/S0218127413300164
|
[68] |
Zhang S, Xu J. On the stability and multi-stability of a TCP/RED congestion control model with state-dependent delay and discontinuous marking function. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1-3):269-284 doi: 10.1016/j.cnsns.2014.09.020
|
[69] |
Zhou YS, Wang ZH. Optimal feedback control for linear systems with input delays revisited. Journal of Optimization Theory and Applications, 2014, 163(3):989-1017 doi: 10.1007/s10957-014-0532-8
|
[70] |
朱霖河, 赵洪涌.时滞惯性神经网络的稳定性和分岔控制.物理学报, 2014, 63(9):090203 http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409004.htm
Zhu Linhe, Zhao Hongyong. Stability and bifurcation control in inertial neuron networks with delays. Acta Physica Sinica, 2014, 63(9):090203 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201409004.htm
|
[71] |
郑远广, 王在华.含时滞的快——慢耦合系统的动力学研究进展.力学进展, 2011, 41:400-410 doi: 10.6052/1000-0992-2011-4-lxjzJ2009-019
Zheng Yuanguang, Wang Zaihua. Advances in dynamics of slow-fast systems with time delay. Advances in Mechanics, 2011, 41:400-410(in Chinese) doi: 10.6052/1000-0992-2011-4-lxjzJ2009-019
|
[72] |
England JP, Krauskopf B, Osinga HM. Computing two-dimensional global invariant manifolds in slow-fast systems. International Journal of Bifurcation and Chaos, 2007, 17(3):805-822 doi: 10.1142/S0218127407017562
|
[73] |
Branicki M, Wiggins S. An adaptive method for computing invariant manifolds in non-autonomous, three-dimensional dynamical systems. Physica D, 2009, 238(16):1625-1657 doi: 10.1016/j.physd.2009.05.005
|
[74] |
Vakakis AF, Rand RH. Nonlinear dynamics of a system of coupled oscillators with essential stiffness nonlinearities. International Journal of Non-Linear Mechanics, 2004, 39(7):1079-1091 doi: 10.1016/S0020-7462(03)00098-2
|
[75] |
Pirbodaghi T, Hoseini S. Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity. Journal of Computation and Nonlinear Dynamics, 2009, 5(1):011006 https://www.researchgate.net/publication/265361125_Free_oscillations_of_a_nonlinear_cubic_system_with_two_degrees_of_freedom_and_close_natural_frequencies
|
[76] |
Lee YS, Vakakis AF, Bergman LA, et al. Passive non-linear targeted energy transfer and its applications to vibration absorption:A review. Journal of Multi-body Dynamics, 2008, 222(2):77-134 https://www.researchgate.net/publication/225356821_Robustness_of_nonlinear_targeted_energy_transfer_in_coupled_oscillators_to_changes_of_initial_conditions
|
[77] |
Laxalde D, Thouverez F, Sinou JJ. Dynamics of a linear oscillator connected to a small strongly non-linear hysteretic absorber. International Journal of Nonlinear Mechanics, 2006, 41(8):969-978 doi: 10.1016/j.ijnonlinmec.2006.09.002
|
[78] |
Zheng YG, Wang ZH. Stability and Hopf-bifurcation of a class of TCP/AQM networks. Nonlinear Analysis:Real World Applications, 2010, 11(11):1552-1559 https://www.researchgate.net/publication/242999642_Stability_and_Hopf_bifurcation_of_a_class_of_TCPAQM_networks
|
[79] |
Zheng YG, Wang ZH. Delayed Hopf-bifurcation in time-delayed slow-fast systems. Science China Technological Sciences, 2010, 53(2):656-663 http://www.cnki.com.cn/Article/CJFDTOTAL-JEXG201003008.htm
|
[80] |
Jiang SY, Xu J, Yan Y. Stability and oscillations in a fast-slow flexible joint system with transformation delay. Acta Mechanica Sinica, 2014, 30(5):727-738 doi: 10.1007/s10409-014-0064-3
|
[81] |
Xu J, Jiang SY. Delay-induced Bogdanov-Takens bifurcation and dynamical classifications in a slow-fast flexible joint system. International Journal of Bifurcation and Chaos, 2015, 25(9):1550121 doi: 10.1142/S0218127415501217
|
[82] |
郑远广, 黄承代, 王在华.反馈时滞对van der Pol振子张弛振荡的影响.力学学报, 2012, 44(1):148-157 doi: 10.6052/0459-1879-2012-1-lxxb2011-244
Zheng Yuanguang, Huang Chengdai, Wang Zaihua. Delay effect on the relaxasion oscillations of a van der pol oscillator with delayed feedback. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):148-157(in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-244
|
[83] |
Zheng YG, Wang ZH. Stability analysis of nonlinear dynamic systems with slowly and periodically varying delay. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(10):3999-4009 doi: 10.1016/j.cnsns.2012.02.026
|
[84] |
Zheng YG, Wang ZH. Relaxation oscillation and attractive basins of a two-neuron Hopfield network with slow and fast variables. Nonlinear Dynamics, 2012, 70(2):1231-1240 doi: 10.1007/s11071-012-0527-7
|
[85] |
Zheng YG, Wang ZH. Time-delay effect on the bursting of the synchronized state of coupled Hindmarsh-Rose neurons.Chaos, 2012, 22:043127 doi: 10.1063/1.4768664
|
[86] |
Pare D, Curro'Dossi R, Steriade M. Neuronal basis of the Parkinsonian resting tremor:A hypothesis and its implications for treatment. Neuroscience, 1990, 35(2):217-226 doi: 10.1016/0306-4522(90)90077-H
|
[87] |
Feng CF, Zhang Y, Sun JT, et al. Generalized projective synchronization in time-delayed chaotic systems. Chaos, Solitons and Fractal, 2008, 38(3):743-747 doi: 10.1016/j.chaos.2007.01.037
|
[88] |
Ghosh D. Generalized projective synchronization in time-delayed systems:Nonlinear observer approach. Chaos, 2009, 19:013102 doi: 10.1063/1.3054711
|
[89] |
Fridman E, Shaked U. H-infinity control of linear state-delay descriptor systems:An LMI approach. Linear Algebra Application, 2002, 351-352:271-302 doi: 10.1016/S0024-3795(01)00563-8
|
[90] |
Wang QY, Lu QS. Phase synchronization in small world chaotic neural networks. Chinese Physical Letter, 2005, 22(6):1329-1332 doi: 10.1088/0256-307X/22/6/009
|
[91] |
Li CG, Chen LN, Aihara K. Synchronization of coupled nonidentical genetic oscillators. Physical Biology, 2006, 3(1):33-37 https://www.researchgate.net/publication/7198068_Synchronization_of_Coupled_Nonidentical_Genetic_Oscillators
|
[92] |
Huang H, Feng G. Synchronization of nonidentical chaotic neural networks with time delays. Neural Networks, 2009, 22(7):869-874 doi: 10.1016/j.neunet.2009.06.009
|
[93] |
Song YL, Tadé MO. Bifurcation analysis and spatio-temporal patterns of nonlinear oscillations in a delayed neural network with unidirectional coupling. Nonlinearity, 2009, 22(5):975-1001 doi: 10.1088/0951-7715/22/5/004
|
[94] |
Song YL, Makarov VA, Velarde MG. Stability switches, oscillatory multistability, and spatio-temporal patterns of nonlinear oscillations in recurrently delay coupled neural networks. Biological Cybernatics, 2009, 101(2):147-167 doi: 10.1007/s00422-009-0326-5
|
[95] |
Tass PA. Phase Resetting in Medicine and Biology:Stochastic Modeling and Data Analysis. Berlin:Springer, 1999
|
[96] |
Tass PA. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 2003, 89(2):81-88 doi: 10.1007/s00422-003-0425-7
|
[97] |
Tukhlina N, Rosenblum M. Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. Journal of Biological Physics, 2008, 34(3):301-314 doi: 10.1007/s10867-008-9081-4
|
[98] |
Luo M, Xu J. Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biological Cybernetics, 2009, 101(3):241-246 doi: 10.1007/s00422-009-0334-5
|
[99] |
Strogatz SH, Abrams DM, Mcrobie A, et al. Crowd synchrony on the Millennium Bridge. Nature, 2005, 438(7064):43-44 doi: 10.1038/438043a
|
[100] |
Eckhardt B, Ott E, Strogatz SH, et al. Modeling walker synchronization on the Millennium Bridge. Physical Review E, 2007, 75:021110 doi: 10.1103/PhysRevE.75.021110
|
[101] |
Wong KW, Zhen B, Xu J et al. An analytic criterion for generalized synchronization in unidirectionally coupled systems based on the auxiliary system approach. Chaos, 2012, 22:033146 doi: 10.1063/1.4748862
|
[102] |
Wang L, Zhen B, Xu J. A simple approach to achieve modified projective synchronization between two different chaotic systems. The Scientific World Journal, 2013, 2013:568194 https://www.researchgate.net/publication/258254976_A_Simple_Approach_to_Achieve_Modified_Projective_Synchronization_between_Two_Different_Chaotic_Systems
|
[103] |
Song YL, Xu J. Inphase and antiphase synchronization in a delaycoupled system with applications to a delay-coipled FitzHughNagumo system. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10):1659-1670 doi: 10.1109/TNNLS.2012.2209459
|
[104] |
Song YL. Hopf bifurcation and spatio-temporal patterns in delaycoupled van der Pol oscillators. Nonlinear dynamics, 2011, 63(1-2):223-237 doi: 10.1007/s11071-010-9799-y
|
[105] |
Song YL, Xu J, Zhang TH. Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling. Chaos, 2011, 21:023111 doi: 10.1063/1.3578046
|
[106] |
Ge JH, Xu J. Synchronization and synchronized periodic solution in a simplified five-neuron BAM neural network with delays. Neuro-computing, 2011, 74(6):993-999 http://www.sciencedirect.com/science/article/pii/S0925231210004790
|
[107] |
Sun XT, Xu J. Delay induced resonances in a system of coherent interaction of lasers. Journal of Vibration Engineering and Technology, 2014, 2(2):141-15650 Li Q, Zhu Y, Xu D, et al. A negative stiffness vibration isol
|
[108] |
Wang L, Zhao HY. Synchronized stability in a reaction-diffusion neural network model. Physics Letters A, 2014, 378(48):3586-3599 doi: 10.1016/j.physleta.2014.10.019
|
[109] |
Luo M, Xu J. Suppression of collective synchronization in system of neural groups with washout-filter aided feedback. Neural Networks, 2011, 24(6):538-543 doi: 10.1016/j.neunet.2011.02.008
|
[110] |
邓杨, 彭志科, 杨扬等.基于参数化时频分析的非线性振动系统参数辨识.力学学报, 2013, 45(6):992-996 doi: 10.6052/0459-1879-13-125
De Yang, Peng Zhike, Yang Yang, et al. Identification of nonlinear vibration systems based on parametric TFA. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):992-996 (in Chinese) doi: 10.6052/0459-1879-13-125
|
[111] |
谢永, 刘盼, 蔡国平.基于加速度信号的柔性板的挠性参数辨识.力学学报, 2014, 46(1):128-135 doi: 10.6052/0459-1879-13-124
Xie Yong, Liu Pan, Cai Guoping. Parameter identification of flexible plate based on the acceleration output. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):128-135 (in Chinese) doi: 10.6052/0459-1879-13-124
|
[112] |
Xu Q, Wang ZH. Exact stability test of neural delay differential equations via a rough estimation of the testing integral. International Journal of Dynamics and Control, 2014, 2(2):154-163 doi: 10.1007/s40435-013-0044-7
|
[113] |
Xu Q, Stepan G, Wang ZH. Delay-dependent stability analysis by using delay-independent integral evaluation. Automatica, 2016, 70: 153-157 doi: 10.1016/j.automatica.2016.03.028
|
[114] |
Xu Q, Stepan Gabor, Wang ZH. Balancing a wheeled inverted pendulum with a single accelerometer in the presence of time delay. Journal of Vibration and Control, 2017, 23(4):604-614 doi: 10.1177/1077546315583400
|
[115] |
He YQ, Han JD. Acceleration-feedback-enhanced robust control of an unmanned helicopter. Journal of Guidance, Control and Dynamics, 2010, 33(4):1236-1250 doi: 10.2514/1.45659
|
[116] |
Wang ZH, Hu HY, Xu Q, et al. Effect of delay combinations on stability and Hopf bifurcation of an oscillator with accelerationderivative feedback. International Journal of Nonlinear Mechanics, doi:10.1016/j.ijnonlinmec.2016.10.008
|
[117] |
高雪, 陈前, 刘先斌.一类分段光滑隔振系统的非线性动力学设计方法.力学学报, 2016, 48(1):192-200 doi: 10.6052/0459-1879-15-099
Gao Xue, Chen Qian, Liu Xianbin. Nonlinear dynamics design for piecewise smooth vibration isolation system. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):192-200 (in Chinese) doi: 10.6052/0459-1879-15-099
|
[118] |
王在华, 胡海岩.具有采样反馈的力控制系统稳定性.力学学报, 2016, 48(6):1372-1381 http://lxxb.cstam.org.cn/CN/abstract/abstract146108.shtml
Wang Zaihua, Hu Haiyan. Stability of a force control system with sampled-data feedback. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6):1372-1381 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract146108.shtml
|
[1] | 研究了雷诺数Re=200, 1000, 线速度比α=0.5,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021 |
[2] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[3] | SEPARATION OF PRINCIPAL STRESSES IN DYNAMIC PHOTOELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(1): 60-69. DOI: 10.6052/0459-1879-1994-1-1995-522 |
[4] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
[5] | COMPUTER-AIDED PHOTOELASTIC STRESS ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 76-83. DOI: 10.6052/0459-1879-1993-1-1995-616 |
[6] | SOLUTION OF STRESS INTENSITY FACTORS BY WEIGHT FUNCTION FOR SMALL CORNER CRACKS IN PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(3): 376-380. DOI: 10.6052/0459-1879-1992-3-1995-751 |
[7] | STATISTICAL ANALYSIS OF BENDING STRESS INTENSITY FACTORS FOR CRACKED PLATE WITH UNCERTAIN PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 339-346. DOI: 10.6052/0459-1879-1991-3-1995-846 |
[8] | STRESS INTENSITY FACTORS FOR CORNER CRACKS AT HOLE UNDER REMOTE TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 315-322. DOI: 10.6052/0459-1879-1991-3-1995-843 |