Citation: | Zhou Ting, Kan Qianhua, Kang Guozheng, Qiu Bo. A MACROSCOPIC PHENOMENOLOGICAL CONSTITUTIVE MODEL FOR THE UNIAXIAL TRANSFORMATION RATCHETING OF SUPER-ELASTIC NiTi SHAPE MEMORY ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 588-596. DOI: 10.6052/0459-1879-17-116 |
[1] |
Buehler WJ, Gilfrich JV, Wiley RC. Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of Applied Physics, 1963, 34(5):1475-1477 doi: 10.1063/1.1729603
|
[2] |
Duerig TW, Pelton A, Stöckel D. An overview of nitinol medical applications. Materials Science and Engineering:A, 1999, 273-275(99):149-160 https://www.researchgate.net/publication/222484943_An_overview_of_NiTiNol_medical_applications
|
[3] |
Morgan NB. Medical shape memory alloy applications-the market and its products. Materials Science and Engineering:A, 2004, 378(1):16-23 http://www.sciencedirect.com/science/article/pii/S0921509303015132
|
[4] |
钱辉, 李宏男, 宋钢兵.形状记忆合金阻尼器消能减震体系的控制研究.振动与冲击, 2008, 27(8):42-47 http://cdmd.cnki.com.cn/Article/CDMD-10141-2009040858.htm
Qian Hui, Li Hongnan, Song Gangbing. Energy dissipation system of structures with shape memory alloy damper. Journal of Vibration and Shock, 2008, 27(8):42-47 (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-2009040858.htm
|
[5] |
Shin M, Andrawes B. Experimental investigation of actively confined concrete using shape memory alloys. Engineering Structures, 2010, 32(3):656-664 doi: 10.1016/j.engstruct.2009.11.012
|
[6] |
邵红红, 彭玉婷, 姜秀英等.医用镍钛合金表面多层薄膜的制备及摩擦磨损和耐腐蚀性能.功能材料, 2014, 45(4):14145-14149 http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201414028.htm
Shao Honghong, Peng Yuting, Xiu ying, et al. Preparation of multilayers on the surface of medical NiTi alloy and properties of friction/wear and corrosion resistance. Journal of Functional Materials, 2014, 45(4):14145-14149 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201414028.htm
|
[7] |
Miyazaki S, Imai T, Igo Y, et al. Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metallurgical transactions A, 1986, 17(1):115-120 doi: 10.1007/BF02644447
|
[8] |
Lagoudas DC, Bo Z. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part Ⅱ:Material characterization and experimental results for a stable transformation cycle. International Journal of Engineering Science, 1999, 37(9):1141-1173 doi: 10.1016/S0020-7225(98)00114-1
|
[9] |
Sehitoglu H, Anderson R, Karaman I, et al. Cyclic deformation behavior of single crystal NiTi. Materials Science and Engineering:A, 2001, 314(1):67-74 https://www.researchgate.net/publication/248469907_Cyclic_deformation_behavior_of_single_crystal_NiTi
|
[10] |
Lexcellent C, Bourbon G. Thermodynamical model of cyclic behaviour of Ti-Ni and Cu-Zn-Al shape memory alloys under isothermal undulated tensile tests. Mechanics of Materials, 1996, 24(1):59-73 doi: 10.1016/0167-6636(96)00027-0
|
[11] |
Nemat-Nasser S, Guo WG. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mechanics of Materials, 2006, 38(5):463-474 https://www.researchgate.net/publication/222696045_Superelastic_and_cyclic_response_of_NiTi_SMA_at_various_strain_rates_and_temperatures
|
[12] |
Yu C, Kang G, Kan Q. A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy:One-dimensional model. Mechanics of Materials, 2014, 78(78):1-10 https://www.researchgate.net/publication/264980841_A_physical_mechanism_based_constitutive_model_for_temperature-dependent_transformation_ratchetting_of_NiTi_shape_memory_alloy_One-dimensional_model
|
[13] |
Kang GH, Kan QH, Qian LM, et al. Ratchetting deformation of super-elastic and shape-memory NiTi alloys. Mechanics of Materials, 2009, 41(2):139-153 doi: 10.1016/j.mechmat.2008.09.001
|
[14] |
Song D, Kang GZ, Kan QH, et al. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy. Smart Materials and Structures, 2014, 23(1):5008 https://www.researchgate.net/publication/274254958_The_effect_of_martensite_plasticity_on_the_cyclic_deformation_of_super-elastic_NiTi_shape_memory_alloy
|
[15] |
Saleeb AF, Padula SA, Kumar A. A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions. International Journal of Plasticity, 2011, 27(5):655-687 doi: 10.1016/j.ijplas.2010.08.012
|
[16] |
Wang X, Wang Y, Lu Z, et al. An experimental study of the superelastic behavior in NiTi shape memory alloys under biaxial proportional and non-proportional cyclic loadings. Mechanics of Materials, 2010, 42(3):365-373 doi: 10.1016/j.mechmat.2009.11.010
|
[17] |
Song D, Kang GZ, Kan QH, et al. Non-proportional multiaxial transformation ratchetting of super-elastic NiTi shape memory alloy:Experimental observations. Mechanics of Materials, 2014, 70(1):94-105 https://www.researchgate.net/publication/259510553_Non-proportional_Multiaxial_Transformation_Ratchetting_of_Super-elastic_NiTi_Shape_Memory_Alloy_Experimental_Observations
|
[18] |
Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physics of Solids, 1995, 43(8):1243-1281 doi: 10.1016/0022-5096(95)00024-D
|
[19] |
Morin C, Moumni Z, Zaki W. Thermomechanical coupling in shape memory alloys under cyclic loadings:Experimental analysis and constitutive modeling. International Journal of Plasticity, 2011, 27(12):1959-1980 doi: 10.1016/j.ijplas.2011.05.005
|
[20] |
Strnadel B, Ohashi S, Ohtsuka H, et al. Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys. Materials Science and Engineering:A, 1995, 202(1):148-156 http://www.sciencedirect.com/science/article/pii/0921509395098011
|
[21] |
Strnadel B, Ohashi S, Ohtsuka H, et al. Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys. Materials Science and Engineering:A, 1995, 203(1):187-196 https://www.researchgate.net/publication/256627507_Effect_of_mechanical_cycling_on_the_pseudoelasticity_characteristics_of_TiNi_and_TiNiCu_alloys
|
[22] |
万征, 姚仰平, 孟达.复杂加载下混凝土的弹塑性本构模型.力学学报, 2016, 48(5):1159-1171 http://lxxb.cstam.org.cn/CN/abstract/abstract146013.shtml
Wan Zheng, Yao Yangping, Meng Da. An elastoplastic constitutive model of concrete under complicated load. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5):1159-1171 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract146013.shtml
|
[23] |
陈庆, 朱合华, 闫治国等.基于自洽法的电化学沉积修复饱和混凝土细观描述.力学学报, 2015, 47(2):367-371 doi: 10.6052/0459-1879-14-147
Chen Qing, Zhu Hehua, Yan Zhiguo, et al. Micro-scale description of the saturated concrete repaired by electrochemical deposition method based on self-consistent method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):367-371 (in Chinese) doi: 10.6052/0459-1879-14-147
|
[24] |
谈炳东, 许进升, 贾云飞等.短纤维增强EPDM包覆薄膜超弹性本构模型.力学学报, 2017, 49(2):317-323 http://lxxb.cstam.org.cn/CN/abstract/abstract146320.shtml
Tan Bingdong, Xu Jinsheng, Jia Yunfei, et al. Hyperelastic constitutive model for short fiber reinforced EPDM inhibitor film. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2):317-323 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract146320.shtml
|
[25] |
黄小双, 彭雄奇, 张必超.帘线/橡胶复合材料各向异性黏-超弹性本构模型.力学学报, 2016, 48(1):140-145 doi: 10.6052/0459-1879-15-189
Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao. An anisotropic visco-hyperelastic constitutive model for cord-rubber composites. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):140-145 (in Chinese) doi: 10.6052/0459-1879-15-189
|
[26] |
Lagoudas DC, Entchev PB. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part Ⅰ:constitutive model for fully dense SMAs. Mechanics of Materials, 2004, 36(9):865-892 doi: 10.1016/j.mechmat.2003.08.006
|
[27] |
Yu C, Kang GZ, Kan QH, et al. Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy:thermo-mechanical coupled and physical mechanism-based constitutive model. International Journal of Plasticity, 2015, 72:60-90 doi: 10.1016/j.ijplas.2015.05.011
|
[28] |
Manchiraju S, Anderson PM. Coupling between martensitic phase transformations and plasticity:a microstructure-based finite element model. International Journal of Plasticity, 2010, 26(10):1508-1526 doi: 10.1016/j.ijplas.2010.01.009
|
[29] |
Yu C, Kang GZ, Kan QH, et al. A micromechanical constitutive model based on crystal plasticity for thermo-mechanical cyclic deformation of NiTi shape memory alloys. International Journal of Plasticity, 2013, 44(9):161-191 https://www.researchgate.net/publication/271560243_A_micromechanical_constitutive_model_based_on_crystal_plasticity_for_thermo-mechanical_cyclic_deformation_of_NiTi_shape_memory_alloys
|
[30] |
Graesser E, Cozzarelli F. A proposed three-dimensional constitutive model for shape memory alloys. Journal of Intelligent Material Systems and Structures, 1994, 5(5):78-89 http://jim.sagepub.com/content/5/1/78.short
|
[31] |
Özdemir H. Nonlinear transient dynamic analysis of yielding struc-tures.[PhD Thesis]. University of Califormia Berkeley, 1976
|
[32] |
Ren WJ, Li HN, Song GB. A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys. Smart Materials and Structures, 2007, 16(1):191-197 doi: 10.1088/0964-1726/16/1/023
|
[33] |
钱辉, 李宏男, 宋钢兵等.基于塑性理论的形状记忆合金本构模型、试验和数值模拟.功能材料, 2007, 38(7):1114-1118 http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200707019.htm
Qian Hui, Li Hongnan, Song Gangbing, et al. Constitutive model of shape memory alloy based on plastic theory:experiment and simulation. Journal of Functional Materials, 2007, 38(7):1114-1118 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200707019.htm
|
[34] |
杨强军, 阚前华, 康国政等.超弹性NiTi合金循环相变诱发塑性本构模型.功能材料, 2015, 46(10):10018-10022 http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201510004.htm
Yang Qiangjun, Kan Qianhua, Kang Guozheng, et al. Constitutive model on cyclic transformation included plasticity of super-elastic NiTi alloy. Journal of Functional Materials, 2015, 46(10):10018-10022 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201510004.htm
|
[35] |
Kan QH, Kang GZ. Constitutive model study on transformation ratcheting of superelastic NiTi alloy. International Journal of Plasticity, 2010, 26(3):441-464 doi: 10.1016/j.ijplas.2009.08.005
|
[1] | Guo Chenggong, Li Jie. A NEW STOCHASTIC DAMAGE CONSTITUTIVE MODEL OF CONCRETE CONSIDERING STRAIN RATE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3456-3467. DOI: 10.6052/0459-1879-22-306 |
[2] | Chen Yunmin, Ma Pengcheng, Tang Yao. CONSTITUTIVE MODELS AND HYPERGRAVITY PHYSICAL SIMULATION OF SOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 901-915. DOI: 10.6052/0459-1879-20-059 |
[3] | Wan Zheng, Meng Da. A CONSTITUTIVE MODEL FOR SAND UNDER COMPLEX LOADING CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948. DOI: 10.6052/0459-1879-18-047 |
[4] | Yao Yangping, Zhang Minsheng, Wan Zheng, Wang Naidong, Zhu Chaoqi. CONSTITUTIVE MODEL FOR SAND BASED ON THE CRITICAL STATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. DOI: 10.6052/0459-1879-17-334 |
[5] | Tan Bingdong, Xu Jinsheng, Sun Chaoxiang, Jia Yunfei, Fan Xinggui. A TRANSVERSELY ISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR SHORT FIBER REINFORCED EPDM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 677-684. DOI: 10.6052/0459-1879-16-380 |
[6] | Tan Bingdong, Xu Jinsheng, Jia Yunfei, Yu Jiaquan. HYPERELASTIC CONSTITUTIVE MODEL FOR SHORT FIBER REINFORCED EPDM INHIBITOR FILM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 317-323. DOI: 10.6052/0459-1879-16-324 |
[7] | Meng Lingkai, Zhou Changdong, Guo Kunpeng, Zhang Xiaoyang. A NEW FORMULATION OF CONSTITUTIVE MODEL FOR HYPERELASTIC-CYCLIC PLASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 660-674. DOI: 10.6052/0459-1879-15-333 |
[8] | Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao. AN ANISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR CORD-RUBBER COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 140-145. DOI: 10.6052/0459-1879-15-189 |
[9] | Ma Ning Hu Ping Wu Wenhua Shen Guozhe Guo Wei. Constitutive Theory and Experiment Analysis of Hot Forming for High Strength Steel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 346-354. DOI: 10.6052/0459-1879-2011-2-lxxb2010-004 |
[10] | Hongrong Fang, Tao Tang, Xiangming Zhang, Zhuo Zhuang. Development on the visco-elastic constitutive model of cardiac muscle based on experiment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 355-363. DOI: 10.6052/0459-1879-2008-3-2007-187 |