Citation: | Ning Jianguo, Yuan Xinpeng, Ma Tianbao, Li Jian. PSEUDO ARC-LENGTH NUMERICAL ALGORITHM FOR COMPUTATIONAL DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 703-715. DOI: 10.6052/0459-1879-16-385 |
[1] |
马天宝, 任会兰, 李健等.爆炸与冲击问题的大规模高精度计算.力学学报, 2016, 48(3):599-608 http://lxxb.cstam.org.cn/CN/abstract/abstract145835.shtml
Ma Tianbao, Ren Huilan, Li Jian, et al. Large scale high precision computation for explosion and impact problems. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):599-608 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145835.shtml
|
[2] |
杨露斯, 黎炼.论计算机发展史及展望.信息与电脑, 2010, 6(1):188-188 http://www.cnki.com.cn/Article/CJFDTOTAL-XXDL201006153.htm
Yang Lusi, Li Lian. Theory of computer development and prospects. China Computer & Communication, 2010, 6(1):188-188 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XXDL201006153.htm
|
[3] |
Luo ST, Tran HV, Yu Y. Some inverse problems in periodic homogenization of hamilton-jacobi equations. Archive for Rational Mechanics and Analysis, 2016, 221(3):1585-1617 doi: 10.1007/s00205-016-0993-z
|
[4] |
Deleuze Y, Chiang CY, Thiriet M, et al. Numerical study of plume patterns in a chemotaxis-diffusion-convection coupling system. Computers & Fluids, 2016, 126(1):58-70
|
[5] |
Tian DS. Multiple positive periodic solutions for second-order differential equations with a singularity. Acta Applicandae Mathematicae, 2016, 144(1):1-10 doi: 10.1007/s10440-015-0030-5
|
[6] |
Riks E. An incremental approach to the solution of snapping and buckling problems. International Journal of Solids & Structures, 1979, 15(7):529-551
|
[7] |
Boor CD. On local spline approximation by moments. Journal of Mathematics and Mechanics, 1968, 17(1):729-735
|
[8] |
Crisfield MA. An arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering, 1983, 19(1):1268-1289
|
[9] |
Chan TF. Newton-like pseudo-arclength methods for computing simple turning points. Siam Journal on Scientific & Statistical Computing, 1984, 5(1):135-148
|
[10] |
忻孝康, 唐登海.一维定常对流-扩散方程的伪弧长参数法.应用力学学报, 1988, 5 (1):45-54 http://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198801005.htm
Xin Xiaokang, Tang Denghai. An arc-length parameter technique for steady diffusion-convection equation. Chinese Journal of Applied Mechanics, 1988, 5 (1):45-54 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198801005.htm
|
[11] |
陈国谦, 高智.对流扩散方程的迎风变换及相应有限差分方法.力学学报, 1991, 23(4):418-425 http://lxxb.cstam.org.cn/CN/abstract/abstract140618.shtml
Chen Guoqian, Gao Zhi. Transformation of the convective diffusion equation with corresponding finite difference method. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4):418-425 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract140618.shtml
|
[12] |
武际可, 许为厚, 丁红丽.求解微分方程初值问题的一种弧长法.应用数学和力学, 1999, 20(8):875-880 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX908.013.htm
Wu Jike, Xu Weihou, Ding Hongli. Arc-length method for differential equations. Applied Mathematics and Mechanics, 1999, 20(8):875-880 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YYSX908.013.htm
|
[13] |
Harten A, Hyman JM. Self adjusting grid methods for onedimensional hyperbolic conservation laws. Journal of Computational Physics, 1983, 50(2):235-269 doi: 10.1016/0021-9991(83)90066-9
|
[14] |
Ren YH, Russell RD. Moving mesh techniques based upon equidistribution, and their stability. Siam Journal on Scientific & Statistical Computing, 1992, 13(6):1265-1286
|
[15] |
Huang WZ, Ren YH, Russell RD. Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. Siam Journal on Numerical Analysis, 1994, 31(3):709-730 doi: 10.1137/0731038
|
[16] |
White AB. On selection of equidistributing meshes for two-point boundary-value problems. Siam Journal on Numerical Analysis, 1979, 16(3):472-502 doi: 10.1137/0716038
|
[17] |
Stockie JM, Mackenzie JA, Russell RD. A moving mesh method for one-dimensional hyperbolic conservation laws. Siam Journal on Scientific Computing, 2001, 22(5):1791-1813 doi: 10.1137/S1064827599364428
|
[18] |
Tang HZ, Tang T. Adaptive mesh methods for one-and twodimensional hyperbolic conservation laws. Siam Journal on Numerical Analysis, 2003, 41(2):487-515 doi: 10.1137/S003614290138437X
|
[19] |
Ning JG, Wang X, Ma TB, et al. Numerical simulation of shock wave interaction with a deformable particle based on the pseudo arclength method. Science China Technological Sciences, 2015, 58(5):848-857 doi: 10.1007/s11431-015-5800-9
|
[20] |
王星, 马天宝, 宁建国.双曲偏微分方程的局部伪弧长方法研究.计算力学学报, 2014, 31(3):384-389 doi: 10.7511/jslx201403017
Wang Xing, Ma Tianbao, Ning Jianguo. Local pseudo arc-length method for hyperbolic partial differential equation. Chinese Journal of Computational Mechanics, 2014, 31(3):384-389 (in Chinese) doi: 10.7511/jslx201403017
|
[21] |
Wang X, Ma TB, Ning JG. A pseudo arc-length method for numerical simulation of shock waves. Chinese Physics Letter, 2014, 31(3):030201-030201 doi: 10.1088/0256-307X/31/3/030201
|
[22] |
Wang X, Ma TB, Ren HL, et al. A local pseudo arc-length method for hyperbolic conservation laws. Acta Mechanica Sinica, 2014, 30(6):956-965 doi: 10.1007/s10409-014-0091-0
|
[23] |
Ning JG, Yuan XP, Ma TB, et al. Positivity-preserving moving mesh scheme for two-step reaction model in two dimensions. Computers & Fluids, 2015, 123(1):72-86
|
[24] |
Yuan XP, Ning JG, Ma TB, et al. Stability of newton tvd runge-kutta scheme for one-dimensional Euler equations with adaptive mesh. Applied Mathematics & Computation, 2016, 282(1):1-16
|
[25] |
Sun LP, Cong YH, Kuang JX. Asymptotic behavior of nonlinear delay differential-algebraic equations and implicit Euler methods. Applied Mathematics & Computation, 2014, 228(1):395-403
|
[26] |
Harwood SM, Kai H, Barton PI. Efficient solution of ordinary differential equations with a parametric lexicographic linear program embedded. Numerische Mathematik, 2016, 133(4):623-653 doi: 10.1007/s00211-015-0760-3
|
[27] |
Perthame B, Shu CW. On positivity preserving finite volume schemes for Euler equations. Numerische Mathematik, 1996, 73(1):119-130 doi: 10.1007/s002110050187
|
[28] |
Wang C, Zhang X, Shu CW, et al. Robust high order discontinuous galerkin schemes for two-dimensional gaseous detonations. Journal of Computational Physics, 2012, 231(2):653-665 doi: 10.1016/j.jcp.2011.10.002
|
[29] |
魏涛, 许明田, 汪引.求解对流扩散问题的积分方程法.化工学报, 2015, 66(10):3888-3894 doi: 10.11949/j.issn.0438-1157.20150364
Wei Tao, Xu Mingtian, Wang Yin. Integral equation approach to convection-diffusion problems. Ciesc Journal, 2015, 66(10):3888-3894 (in Chinese) doi: 10.11949/j.issn.0438-1157.20150364
|
[30] |
Zhou XF, Guo J, Li F. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation. Nuclear Engineering & Design, 2015, 295(1):567-575 https://www.researchgate.net/publication/285037521_Stability_accuracy_and_numerical_diffusion_analysis_of_nodal_expansion_method_for_steady_convection_diffusion_equation
|
[31] |
Sandu A. Rosenbrock methods with an explicit first stage. International Journal of Computer Mathematics, 2015, 93(6):1-18 https://www.researchgate.net/publication/226034423_Singly_Diagonally_Implicit_Runge-Kutta_Methods_with_an_Explicit_First_Stage
|
[32] |
冯帆, 王自发, 唐晓.一个基于打靶法的大气污染源反演自适应算法.大气科学, 2016, 40(4):719-729 http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604005.htm
Feng Fan, Wang Zifa, Tang Xiao. Development of an adaptive algorithm based on the shooting method and its application in the problem of estimating air pollutant emissions. Chinese Journal of Atmospheric Sciences, 2016, 40(4):719-729 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201604005.htm
|
[33] |
Chen Z, Huang H, Yan J. Third order maximum-principle-satisfying direct discontinuous galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes. Journal of Computational Physics, 2015, 308(1):198-217 https://www.osti.gov/pages/biblio/1330548-third-order-maximum-principle-satisfying-direct-discontinuous-galerkin-methods-time-dependent-convection-diffusion-equations-unstructured-triangular-meshes
|
[34] |
刘朝阳, 王振国, 孙明波, 等.一种求解激波问题的中心差分——WENO混合方法研究.推进技术, 2016, 37(8):1522-1528 http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608016.htm
Liu Chaoyang, Wang Zhenguo, Sun Mingbo, et al. Investigation of a hybrid central difference-WENO method for shock wave problems. Journal of Propulsion Technology, 2016, 37(8):1522-1528 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201608016.htm
|
[35] |
Shu CW, Osher S. Efficient implementation of essentially nonoscillatory shock-capturing schemes. Journal of Computational Physics, 1989, 83(1):32-78 doi: 10.1016/0021-9991(89)90222-2
|
[36] |
Gotlieb S, Shu CW. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1996, 67(221):73-85 http://dl.acm.org/citation.cfm?id=870122
|
[37] |
Doring W. On detonation processes in gases. Annals of Physics, 1943, 43(9):421-436
|
[38] |
Fickett W, Wood WW. Flow calculations for pulsating onedimensional detonations. The Physics of Fluids, 1966, 9(5):903-916 doi: 10.1063/1.1761791
|
1. |
Tianbao MA,Chentao WANG,Xiangzhao XU. Conservative high precision pseudo arc-length method for strong discontinuity of detonation wave. Applied Mathematics and Mechanics(English Edition). 2022(03): 417-436 .
![]() |
|
2. |
赵金庆,马天宝. 基于伪弧长移动网格算法的爆炸与冲击多介质问题数值模拟. 兵工学报. 2020(S2): 200-210 .
![]() | |
3. |
栗建桥,马天宝,宁建国. 爆炸对自然磁场干扰机理. 力学学报. 2018(05): 1206-1218 .
![]() |