EI、Scopus 收录
中文核心期刊
Shan Renliang, Bai Yao, Huang Pengcheng, Song Yongwei, Guo Xiang. EXPERIMENTAL RESEARCH ON FAILURE CRITERIA OF FRESHWATER ICE UNDER TRIAXIAL COMPRESSIVE STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 467-477. DOI: 10.6052/0459-1879-16-364
Citation: Shan Renliang, Bai Yao, Huang Pengcheng, Song Yongwei, Guo Xiang. EXPERIMENTAL RESEARCH ON FAILURE CRITERIA OF FRESHWATER ICE UNDER TRIAXIAL COMPRESSIVE STRESS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 467-477. DOI: 10.6052/0459-1879-16-364

EXPERIMENTAL RESEARCH ON FAILURE CRITERIA OF FRESHWATER ICE UNDER TRIAXIAL COMPRESSIVE STRESS

  • Received Date: December 04, 2016
  • Available Online: January 22, 2016
  • In order to know the mechanical properties of frozen wall which contain ice, solve the ice-rock coupling problems, provide believable parameters for ice engineering design and numerical simulation analysis, it is necessary to research the ice mechanics under triaxial compressive stress. Taking the frozen shaft construction of Shilawusu coal mine in Inner Mongolia Autonomous region Dongsheng coal field as the project background of the research. The similarity columnar ice specimens are fabricated in the laboratory based on the field data. A series of tests were performed on artificial freshwater columnar ice under triaxial compression at 4 group temperatures and 7 group confining pressures by using the TDW-200 frozen soil triaxial test system. The loading rate of the series of tests is 0.5 mm/min, and the loading direction is perpendicular to the crystal axis of ice. The results show that, when the experimental temperature is constant, the plasticity of columnar ice increases with increasing confining pressures. When the experimental confining pressure is constant, the brittleness of columnar ice increases with decreasing temperature. Within the range of test temperature, the strength of columnar ice and polycrystalline ice increase with the increase of confining pressure and temperature. The strength of columnar ice is higher than polycrystalline ice at the same conditions. The non-linear relationship between deviatoric stress and confining pressures is explained by D-A model or Teardrop model. From the point of view of integrated advisement, the D-A failure criteria is more reasonable to describe the failure characteristics of the freshwater ice. The conclusions can provide some scientific references for ice-rock coupling research and numerical simulation under the same conditions.
  • [1]
    陈守建, 王永, 伍跃中等.西北地区煤炭资源及开发潜力.西北地质, 2006, 39(4):40-56 http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200604007.htm

    Chen Shoujian, Wang Yong, Wu Yuezhong, et al. Coal resources and development potential in northwest China. Northwestern Geology, 2006, 39(4):40-56(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-XBDI200604007.htm
    [2]
    单仁亮, 白瑶, 宋立伟等.冻结岩壁爆破振动及损伤特性试验研究.岩石力学与工程学报, 2015, 34(S2):3732-3741 http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2014.htm

    Shan Renliang, Bai Yao, Song Liwei, et al. Experimental study of blasting vibration and damage characteristics on frozen shaft wall. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 S2):3732-3741(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2014.htm
    [3]
    杨昊. 饱冰裂隙岩体力学特性及破坏形态试验研究. [博士论文]. 北京: 中国矿业大学 (北京), 2015

    Yang Hao. Experimental study on mechanical properties and failure modes of ice-saturated fractured rock.[PhD Thesis]. Beijing:China University of Mining and Technology, 2015(in Chinese)
    [4]
    Gold LW. Some observations on the dependence of strain on stress for ice. Canadian Journal of Physics, 1958, 36(10):1265-1275 doi: 10.1139/p58-131
    [5]
    Dutt PK, Cole DM, Schulson EM, et al. A fracture study of ice under high strain rate loading. International Journal of Offshore and Polar Engineering, 2004, 14(3):182-188 https://www.researchgate.net/publication/280687601_A_Fracture_Study_of_Ice_under_High_Strain_Rate_Loading
    [6]
    李志军, 周庆, 汪恩良等.加载方式对冰单轴压缩强度影响的试验研究.水利学报, 2013, 44(9):1037-1043 http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201309005.htm

    Li Zhijun, Zhou Qing, Wang Enliang, et al. Experimental study on the loading mode effects on the ice uniaxial compressive strength. Journal of Hydraulic Engineering, 2013, 44(9):1037-1043(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201309005.htm
    [7]
    季顺迎, 王安良, 苏洁等.环渤海海冰弯曲强度的试验测试及特性分析.水科学进展, 2011, 22(2):266-272 http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201102020.htm

    Ji Shunying, Wang Anliang, Su Jie, et al. Experimental studies and characteristics analysis of sea ice flexural strength around the Bohai Sea. Advances in Water Science, 2011, 22(2):266-272(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201102020.htm
    [8]
    贾青, 李志军, 韩红卫等.水库淡水冰剪切强度试验研究.数学的实践与认识, 2015, 45(5):132-137 http://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201505017.htm

    Jia Qing, Li Zhijun, Han Hongwei, et al. Experimental study on shear strength of freshwater ice in a reservoir. Mathematics in Practice & Theory, 2015, 45(5):132-137(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201505017.htm
    [9]
    Cox GFN, Richter-Menge JA. Confined compressive strength of multi-year pressure ridge sea ice samples. Journal of Offshore Mechanics and Arctic Engineering, 1988, 110(3):295-301 doi: 10.1115/1.3257065
    [10]
    Steel A, Morin PJ, Clark JI. Behavior of laboratory-made spray ice in triaxial compression testing. Journal of Cold Regions Engineering, 1990, 4(4):192-204 doi: 10.1061/(ASCE)0887-381X(1990)4:4(192)
    [11]
    Nadreau JP, Nawwar AM, Wang YS. Triaxial testing of freshwater ice at low confining pressures. Journal of Offshore Mechanics and Arctic Engineering, 1991, 113(3):260-265 doi: 10.1115/1.2919929
    [12]
    Singh SK, Jordaan IJ. Triaxial tests on crushed ice. Cold Regions Science and Technology, 1996, 24(2):153-165 doi: 10.1016/0165-232X(95)00017-6
    [13]
    Gratz ET, Schulson EM. Brittle failure of columnar saline ice under triaxial compression. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5091-5107 doi: 10.1029/96JB03738
    [14]
    Timco GW, Weeks WF. A review of the engineering properties of sea ice. Cold Regions Science & Technology, 2010, 60(2):107-129 http://www.sciencedirect.com/science/article/pii/S0165232X09001797
    [15]
    Goldstein RV, Osipenko NM. Fracture mechanics in modeling of icebreaking capability of ships. Journal of Cold Regions Engineering, 1993, 7(2):33-44 doi: 10.1061/(ASCE)0887-381X(1993)7:2(33)
    [16]
    徐洪宇, 赖远明, 喻文兵等.人造多晶冰三轴压缩强度特性试验研究.冰川冻土, 2011, 33(5):1120-1126 http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201105022.htm

    Xu Hongyu, Lai Yuanming, Yu Wenbing, et al. Experimental research on triaxial strength of polycrystalline ice. Journal of Glaciology & Geocryology, 2011, 33(5):1120-1126(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201105022.htm
    [17]
    孟闻远, 郭颍奎.冰体力学本构模型的构建.水利水电科技进展, 2015(4):32-34 http://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201504010.htm

    Meng Wenyuan, Guo Yingkui. Construction of mechanics constitutive model of ice. Advances in Science and Technology of Water Resources, 2015(4):32-34(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201504010.htm
    [18]
    狄少丞, 季顺迎.海冰与自升式海洋平台相互作用GPU离散元模拟.力学学报, 2014, 46(4):561-571 http://lxxb.cstam.org.cn/CN/abstract/abstract144672.shtml

    Di Shaocheng, Ji Shunying. GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure. Chinese Journal of Theoretical & Applied Mechanic, 2014, 46(4):561-571(in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract144672.shtml
    [19]
    彭万巍, 朱元林, 张家懿.人造多晶冰抗压强度实验研究.实验力学, 1998(1):92-97 http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX801.014.htm

    Peng Wanwei, Zhu Yuanlin, Zhang Jiayi. Experimental study on the uniaxial compressive strength of artificial polycrystalline ice. Journal of Experimental Mechanics, 1998(1): 92-97(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX801.014.htm
    [20]
    ESS-S2014-0090水质分析报告. 内蒙古: 内蒙古自治区第二水文地质工程地质勘查院实验室, 2014

    ESS-S2014-0090 Report on water chemical characteristic. Inner Mongolia:Inner Mongolia Second Hydrogeology Geological Prospecting Institute, 2014(in Chinese)
    [21]
    Derradji-Aouat A. Multi-surface failure criterion for saline ice in the brittle regime. Cold Regions Science & Technology, 2003, 36(1-3):47-70 http://www.sciencedirect.com/science/article/pii/S0165232X02000939
    [22]
    俞茂鋐.强度理论百年总结.力学进展, 2004, 34(4):529-560 http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200404009.htm

    Yu Maohong. Advances in strength theories for materials under complex stress state in the 20th Century. Advances in Mechanics, 2004, 34(4):529-560(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200404009.htm
    [23]
    Petrovic JJ. Review mechanical properties of ice and snow. Journal of Materials Science, 2003, 38(1):1-6 doi: 10.1023/A:1021134128038
    [24]
    Jones SJ. The confined compressive strength of polycrystalline ice. Journal of Glaciology, 1982, 28(98):171-177 doi: 10.1017/S0022143000011874
    [25]
    Rist M A, Murrell S A F. Ice triaxial deformation and fracture. Journal of Glaciology, 1994, 40:305-318 doi: 10.1017/S0022143000007395
    [26]
    Chaplin M. Water structure and science[EB/OL]. 2016, http://www.lsbu.ac.uk/water/
    [27]
    张学言, 闫澍旺.岩土塑性力学基础.天津:天津大学出版社, 2006

    Zhang Xueyan, Yan Shuwang. Fundamentals of Geotechnical Plasticity. Tianjin:Tianjin University Press, 2006(in Chinese)
    [28]
    Liu Z, Amdahl J, Løset S. Plasticity based material modelling of ice and its application to ship-iceberg impacts. Cold Regions Science & Technology, 2012, 65(3):326-334 http://www.sciencedirect.com/science/article/pii/S0165232X1000193X
  • Related Articles

    [1]Zhang Yuanrui, Zhu Yudong, Zheng Zhijun, Yu Jilin. A COUPLING ANALYSIS MODEL OF CLAMPED MONOLITHIC BEAM IMPACTED BY FOAM PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172. DOI: 10.6052/0459-1879-22-223
    [2]Chen Shaolin, Wu Rui, Zhang Jiao, Gu Yin. TOPOGRAPHY AND SOIL-STRUCTER INTERACTION EFFECTS ON THE SEISMIC RESPONSE OF THREE-DIMENSIONAL CANYON-CROSSING BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794. DOI: 10.6052/0459-1879-21-039
    [3]Jin Qiduo, Ren Yiru, Hu Xuan, Jiang Hongyong. LOW-VELOCITY IMPACT RESPONSES OF FG-GRC SANDWICH BEAMS WITH VISCOELASTIC CORES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 194-204. DOI: 10.6052/0459-1879-20-248
    [4]Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
    [5]Jiaxi Zhou, Zichen Deng. On the contact law and structure responses of sandwich beam subject to low-velocity impact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 113-121. DOI: 10.6052/0459-1879-2009-1-2007-427
    [6]Impact response of an unrestrained modified Timoshenko beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 262-269. DOI: 10.6052/0459-1879-2006-2-2004-380
    [7]NUMERICAL SIMULATION AND A SIMPLIFIED MODEL FOR THE EARLY STAGE RESPONSE OF A MILD STEEL BEAM UNDER IMPACT LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 464-469. DOI: 10.6052/0459-1879-1997-4-1995-252
    [8]THE RESPONSE OF FINITE THICKNESS SAND-BED TO WAVE LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 56-68. DOI: 10.6052/0459-1879-1993-1-1995-614
    [9]THE LARGE DEFLECTION DYNAMIC PLASTIC RESPONSE OF A NOTCHED CANTILEVER BEAM SUBJECTED TO IMPACT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 48-55. DOI: 10.6052/0459-1879-1993-1-1995-613
    [10]LEE MING-HUA. EFFECT OF STRESS-STRAIN CURVE OF MATERIAL ON SOLUTION OF PLANE-STRESS PROBLEMS WITH LARGE PLSTIC DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1957, 1(1): 77-94. DOI: 10.6052/0459-1879-1957-1-1957-013

Catalog

    Article Metrics

    Article views (1645) PDF downloads (556) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return